
GODDARDSPACEFLIGHTCENTER

CIrHRU)

(CODE)

(¢_bTIKQORY)

COMPUTER PROGRAMMER'S MANUAL

GODDARD SPACE FLIGHT CENTER

COMPUTER PROGRAMMER 'S MANUAL '

7 September 1965 _

Prepared for

DATA SYSTEMS DIVISION

under Contrac_)NAs5-9817

by

/SYST_4DEVELOPMENT CORPORATION /_

25 February 1966 i

FOREWORD

The Programmer's Manual applies to all users of the Data

Systems Division electronic data processing equipment of

the Goddard Space Flight Center, Greenbelt, Maryland.
It is recognized that changes to this manual will be

necessary as operational experience is gained and oper-

ational computer programs are revised. Recomnendations

for revision and/or changes are encouraged and will be

submitted to the Data Systems Division.

Initial distribution of this manual and change pages will
be made in accordance with established distribution lists.

Proposed or recommended revisions and/or changes will not

be implemented until such changes are published by the

Data Systems Division. Changes will be issued as replace-
ment pages.

The technical material contained in the Progra_ner's Manual

was in large part derived from documents authored by IBM

and UNIVAC and from the Progra_ning Methods Section and the

Advanced Orbit Programming Branch of the Data Systems Division.

25 February 1966 ii

Paragraph

2.1

2.2

2.3

CONTENTS

CHAPTER 1 INTRODUCTION

Page

This chapter to be provided at a later date i-i

CHAPTER 2 7094 FORTRAN OPERATING SYSTEM

7094 FORTRAN SYSTEM DESCRIPTION 2-1

2.1.1

2.1.2

2.1.3
2.1.4

SYSTEM CONFIGURATION 2-1

MACHINE CONFIGURATION 2-4

SYSTEM TAPE MAINTENANCE 2-6

ERROR REPORTING 2-6

DETAILED PROCEDURES 2-6

2.2.1

2.2.2

2.2.3

CONTROL CARDS FORMAT AND USAGE 2-6

DECK STRUCTURE 2-37
PROGRAMMING AIDS 2-51

BIBLIOGRAPHY 2-57

2.3.1

2.3.2
2.3.3
2.3.4

2.3.5

2.3.6

IBM 7090/7094 SYSTEMS REFERENCE LIBRARY 2-59
MACHINE SYSTEM 2-60

PROGRAMMING SYSTEMS 2-62

COBOL 2-63

FORTRAN 2-64

INSTALLATION SUPPLIES 2-68

25 February 1966 iii

P_r_h

2.4

2.5

3.1

3.2

3.3

3.4

CONTENTS (Cont'd)

Pag_____e

SYSTEM TAPE CONTENTS 2-71

UTILITY ROUTINES 2-97

2.5.1

2.5.2
2.5.3

FORTRAN II 2-97

FORTRAN IV 2-105

SUPPORT 2-105

CHAPTER 3 CAMEO

CAMEO SYSTEM DESCRIPTION 3-1

3•i.i SYSTEM STRUCIURE 3-i

3.1.2 MACHINE CONFIGURATION 3-3

3 I 3 SYSTEM TAPE MAINTENANCE 3 5
3.1.4 ERROR REPORTING 3-5

DETAILED PROCEDURE S.................. 3-5

CAMEO CONTROL COMMANDS 3-5

CAMEO CONSOLE SETTINGS 3-6

CAMEO BIBLIOGRAPHY 3-9

3.3.1

3.3.2

3-3.3

3.3.4

3.3.5
3.3.6

3.3.7

PROGRAMMING IN MYSTIC: A PRIMER ON THE USE OF CAMEO . 3-9

CAMEO SYSTEM DESCRIPTION 3-9

CAMEO: UNIVAC 1107 USAGE 3-9

CAMEO: IBM 7094 USAGE 3-9

MYSTIC DICTIONARY ROUTINE 3-10
RI5 CAMEO QUICK DIAGNOSTIC FUNCTION PROGRAM

DESC TION 3-10
 143 MOD F CIT O 3- 0

PROGRAMMING SUPPORT PACKAGES 3-11

3.4.1

3.4.2

3.4.3

3.4.4

UTILITY PACKAGE 3-11

ARITHMETIC PACKAGES 3-11

SPECIAL PURPOSE PACKAGES 3-12

PERIPHERAL EQUIPMENT UTILITY ROUTINES 3-13

25 February 1966 iv

Paragraph

3.5

3.6

CONTENTS (Cont'd)

P ge

ENCODER TAPES 3-14

3.5.1 ENCODER FOR UNIVAC 1107 3-14

3.5.2 ENCODER FOR IBM 7094 (32Ki 3-14

3.5.3 ENCODER FOR IBM 7094 (65KI [. 3-14

3.5.4 ENCODER FOR IBM 7094 (DOUBLE PRECISION) 3-14

FUNCTIONAL AIDS AND CODING SHEETS 3-15

3.6.1 MYSTIC STORAGE MAP 3-15

3.6.2 CAMEO CODING SHEET 3-15

JOB PROCEDURE • 3-15

AOPB FUNCTIONAL SUBROUTINES 3-18

CHAPTER 4 EXEC 2 PROCESSOR-II07

This chapter to be provided at a later date 4-1

CHAPTER 5 AUTOCODER-SPS

This chapter to be provided at a later date 5-1

CHAPTER 6 SHARE OPERATING SYSTEM

This chapter to be provided at a later date 6-1

CHAPTER 7 360 OPERATING SYSTEM

This chapter to be provided at a later date 7-1

25 February 1966 V

ILLUSTRATIONS

ng e

2-1

2-2

2-3
2-4

2-5
2-6

2-7
2-8

2-9
2-i0

2-ii

2-12

2-13
2-14

2-15
2-16

2-17
2-18

2-19
2-20

3-i

3-2

3-3

Page

Flow Diagram of Combined IBSYS and FMS System Tape 2-3
IBSYS Control Cards Format 2-7

IBJOB Control Cards Format 2-13

IBLDR Control Cards Format 2-23

Operation of Overlay 2-26

FMS Control Cards Format 2-31

Sample FORTRAN IV Compilation, No Execution 2-37

Sample FORTRAN IV Execution Run from Binary Decks 2-38

Sample Multiple FORTRAN IV Compilations and IBMAP Assemblies. 2-39

Sample FORTRAN IV Compilation, IBMAP Assemblies,
Load Binary Decks 2-40

Sample FORTRAN IV Execute Programs from Binary Tape 2-41
Sample FORTRAN IV Modify PREST Decks and Execute 2-42

SampleFORTRAN IV Overlay Job 2-43

Sample FORTRAN Iv Debug Execution 2-44

Sample FORTRAN II Execute 2-45
Sample FORTRAN II Compile 2-46

Sample FORTRAN II Compile and Execute 2-47
Sample FORTRAN II Compile and Execute with

Binary Subroutines 2-48

Sample FORTRAN II Compile, Assemble, and Execute 2-49
Sample FORTRAN II Compile, Execute, and Debug 2-50

Flow Diagram of CAMEO Operation 3-2

Mystic Storage Map Form 3-16

CAMEO Coding Form 3-17

Table

2-1

2-2

2-3
2-4

3-1

3-2

TABLES

Page

_jor Computer Equipment (IBSYS/FMS) 2-4
Peripheral Equipment (IBSYS/FMS)... " 2-5
7094 FORTRAN Documentation Listing 2-57

7094 FORTRAN Documentation Form-Number Index 2-69

Major Computer Equipment (EXEC II) 3-3

Peripheral Equipment (EXEC II) 3-4

INDICES

Index

CHAPTER 2 7094 FORTRAN OPERATING SYSTEM

27 May Z966 l-i

(l-ii blank)

_ragraph

1.1

1.2

1.3

CONTENTS

CHAPTER 1 PRELIMINARY INFORMATION

INTRODUCTION i-i

CONTENT I-i

MISCELLANEOUS INFORMATION 1-2

27 _ay 1966 1-1

CHAPTER i

PRELIMINARY INFORMATION

1.1

1.2

INTRODUCTION

This manual describes the several different programming support sys-

tems employed at the Goddard Space Flight Center, namely, 7094 FORTRAN,

MYSTIC, EXEC II PROCESSOR-1107, and AUTOCODER-SPS. It is tailored to

the experienced programmer as it presents in detail how to use the

various support systems. Each Chapter in this manual is a separate

entity, and as such can be removed without disturbing the contents of

the other chapters. There is a detailed table of contents for each

Chapter, as well as a general table of contents covering the manual
as a whole.

CONTENT

Chapter 2 describes the 7094 FORTRAN operating system and its use.

It contains a system description, machine configurations, and system

tape maintenance and error reporting procedures. This Chapter includes

several illustrations showing job deck composition for a number of

typical runs; presents a description of the control cards and their

use; and offers means by which to use the system effectively. There

is a bibliography which provides the user an access to the list of

documents describing the major components of the 7094 operating sys-

tem. There is a section describing in brief the characterization of

the systems contained on the combined IBSYS/FMS master tape employed

on the 7094 A, B, C, E, and F computers. A final section describes

utility routines that have been prepared for use by Goddard Space

Flight Center programmers.

27 May1966 1-2

1.3

Chapter 3 describes the Computer-independent Abstract Machine-

language _Enc°der and O_pe_ating system (CAMEO)-aud its _se. It con-

tains a system description, machine configurations, and system tape

maintenance and error procedures. This Chapter includes several

illustrations showing computer set-up for a number of typical runs;

presents a description of control commands and their use; and offers

means by which to use CAMEO effectively. There is a bibliography

which provies a llst of abstracts of documents on CAMEO. Also in-

cluded are functional aids and functional subroutines along with the

encoders that are embedded in the CAMEO system.

Chapter 4 describes the EXEC II System for the Univac 1107. It

touches upon EXEC II ll07-1108 configuration differences; details the

19 control cards that exercise control over the EXEC II System; pre-

sents illustrations showing job deck composition for a number of

typical runs, as well as describing programming procedures, operating

procedures, utility routines; and has a bibliography to the list of

documents describing the major components of the ll07 operating system.

Chapter 5 describes the similar symbolic programming systems, the

Autocoder and the S_ymbolic _Programming System (SPS) for IBM peripheral

equipment. It describes system configuration, machine configuration,

system tape maintenance and error reporting, processor-control oper-

ations, utility routines, as well as a bibliography with abstracts.

Chapter 7 is to be provided.

Chapter 8 is an addendum. The programmer uses this supplement to in-

sert memorandums, various forms, telephone numbers, and other Infor-

mation to assist him in the performance of his everyday duties.

MISCELIANEOUS INFORMATION

This section will eventually include the forms pertaining to error re-

porting indicated in the subsequent Chapters of this manual.

7 September 1965 2-i

Paragraph

2.1

2.2

CONTENTS

CHAPTER 2 7094 FORTRAN OPERATING SYSTEM

pag___Ae

7094 FORTRAN SYSTD4 DESCRIPTION 2-i

2.1.1

2.1.2

2.1.3

2.1.4

SYSTEM CONFIGURATION 2-i

MACHINE CONFIGUATION 2-4

SYSTD4 TAPE MAINTENANCE 2-6

ERROR REPORTING 2-6

DETAILED PROCEDURES 2-6

2.2.1

2.2.2

CONTROL CARDS FORMAT AND USAGE 2-6

2.2.1.1 IBSYS Control Card Description 2-7

2.2.1.2 IBJOB Control Card Description 2-11

2.2ol.3 IBLDR Control Card Description 2-23

2.2.1.4 FMS Control Card Description 2-29

DECK STRUCTURE 2-37

2.2.2.1 FORTRAN IV--Compilations, No Execution . ° 2-37

2°2°2.2 FORTRAN IV-oExecution Run from Binary

Decks 2-38

2.2°2.3 Mulziple FORTRAN IV Compilations and

IBMAP Assemblies 2-39

2°2.2.4 FORTRAN IV--Compilation, IBMAP Assemblies,

Load Binary Decks 2-40

2.2°2°5 FORTRAN IVo-Execute Programs from Binary

Tape 2-41

2°2°2.6 FORTRAN IV®-ModifyPREST Decks and Execute . 2-42

2°2°2.7 FORTRAN IV--Overlay Job 2-43

2.2.2.8 FORTRAN IV--Debug Execution 2-44

7 September1965 2-ii

Paragraph

2.3

CONTENTS (Cont'd)

2.2.3

2.2.2.9 FORTRAN II--Execute 2-45

2.2.2.10 FORTRAN II--Compile 2-46

2.2.2.11 FORTRAN II--Compile and Execute 2-47

2.2.2.12 FORTRAN II--Compile and Execute with

Binary Subroutines 2-48

2.2.2.13 FORTRAN II--Compile, Assemble, and Execute . 2-49

2.2.2.14 FORTRAN II--Compile, Execute, and Debug. . 2-50

PROGRAMMING AIDS 2-51

2.2.3.1 FORTRAN II 2-51

2.2.3.2 FORTRAN IV 2-52

2.2.3.3 65K Dump Routine--Operating Instructions . • 2-55

2.2.3.4 7094 Machine Language I/0 2-56

2.2.3.5 Channel Tape Assignments 2-56

BIBLIOGRAPHY 2-57

2.3.1

2.3.2

2.3.3

2.3.4

IBM 7090/7094 SYSTEMS REFERENCE LIBRARY 2-59

2.3.1.i 7094 Data Processing System Configurator . . 2-59

2.3.1.2 IBM 7094 Model II Configurator 2-59

MACHINE SYSTEM 2-60

2.3.2.1 7094 Data Processing System--Principles of

Operation 2-60

2.3.2.2 I}94 7094 Model II Data Processing

System (Bulletin) 2-60

2.3.2.3 IBM 729, 7330, and 727 Magnetic Tape Units--

Principles of Operation 2-60

2.3.2.4 IBM 1301 and 1302 Disk Storage: Sequential

Data Organization 2-60

2.3.2.5 IBM 1301 and 1302 Disk Storage, Models 1

and 2, with the 7090, 7094, and 7094

Model II Data Processing System 2-61

PROGRAMMING SYSTEMS 2-62

2.3.3.1 Catalog of Programs for IBM Data Processing

Systems--KWIC Index 2-62

2.3.3.2 IBM 7090/7094 Programming Systems: FORTRAN

II Assembly Program (FAP) 2-62

2.3.3.3 IBM 7090/7094 Programming Systems: Macro

Assembly Program (MAP) Language 2-62

COBOL 2-63

2.3.4.1 COBOL--General Information Manual 2-63

2.3.4.2 IBM 7090/7'094 Programming Systems: IBJOB

Processor Part 5: COBOL Compiler

(IBCBC) 2-63

7 September 1965 2-iii

Paragraph

2.3.5

2.3.6

CONTENTS (Cont'd)

Page

FORTRAN 2-64

2.3.5.1 IBM 7090/7094 Programming Systems:

FORTRAN II Programming 2-64

2.3.5.2 IBM 7090/7094 Programming Systems:

FORTRAN II Operations
2.3.5.3 IBM 7090/7094 FORTRAN IV Compiler (IBm)" 2-64

Replacement: Specifications and Language
Additions 2-64

2.3.5.4 FORTRAN 2-64

2.3.5.5 IBM 7090/7094 Programming Systems:

FORTRAN IV Language 2-65

2.3.5.6 IBM 7090/7094 IBSYS Operating System:

IBJOB Processor 2-65

2.3.5.7 IBM 7090/7094 IBSYS Operating System:

Specifications for IBJOB Processor

Debugging Package 2-65

2.3.5.8 7090/7094 PROGRAMMING SYSTEMS: IBJOB

Processor, Overlay Feature of IBLDR . . 2-65

2.3.5.9 IBM 7090/7094 IBSYS Operating System:

Input/Output Control System 2-65

2.3.5.10 IBM 7090/7094 IBSYS Operating System

Utilities 2-66

2.3.5.11 IBM 7090/7094 Generalized Sorting System:

7090/7094 SORT 2-66

2.3.5.12 IBM 7090/7094 IBSYS Operating System:

System Monitor (IBSYS) 2-66

2.3.5.13 IBM 7090/7094 IBSYS Operating System:

Operator's Guide 2-67

2.3.5.14 IBM 7090/7094 IBSYS Operating System:

Symbolic Update Program--Preliminary

Specifications 2-67

2.3.5.15 IBM 7090/7094 FORTRAN IV Language: Input/

Output without Explicit List and

Format 2-67

INSTALLATION SUPPLIES 2-68

2.3.6.1

2.3.6.2

2.3.6.3

2.3.6.4

2.3.6.5

7094 Reference Card 2-68

COBOL Program Sheet 2-68

COBOL Reference Card 2-68

IBM 7040/44-7090/94 Symbolic Language-

Coding Sheet 2-68

FORTRAN Coding Form 2-68

7 September1965 2-iv

Par_raph

2.4

2.5

CONTENTS (Cont 'd)

SYSTEM TAPE CONTENTS 2-71

2.4.1

2.4.2

FORTRAN MONITOR SYSTEM (FMS) 2-71
2.4. i. 1 FORTRAN II Compiler 2-71

2.4.1.2 FORTRAN II Assembly Program (F_)] . . 2-71

2.4.1.3 Binary Symbolic Subroutine Loader (BSS)[• • 2-72

2.4.1.4 FORTRAN II Library 2-72

SYSTEM MONITOR (IBSYS) 2-82

2.4.2.1 . . 2-82

2.4.2.2
2.4.2.3
2.4.2.4

2.4.2.5
2.4.2.6

2.4.2.7
2.4.2.8

IBJOB Processor

The Commercial Translator Processor (CT) . . 2-95

The 90PAC Processor (90PAC) 2-95

The Input/0utput Control System (IOCSi • • • 2-95

The IBSFAP 2-95

The FORTRAN II Processor iVersion°3i • • • 2-96

The Utilities (DK90OT) 2-96

The RESTART Program 2-96

UTILITY ROUTINES 2-97

2.5.1

2.5.2

2.5.3

FORTRAN II 2"97

2.5. i. I UMPLOT Plotting Subroutine 2-97

2.5.1.2 FORTRAN Subroutines for Using 65K 2-101

2.5.1.3 CalComp Subroutines for IBM 7094 2-103

2.5.1.4 CALL CCPDOT (X, Y, IC) 2-104

2.5.1.5 CALL CPDOTS (BUFFER, IDT, INDIC8) 2-i04

2.5+1o6 CALL SYMBOL (Xj, Y, HEIGHT, BCD, THETA_, N) . 2+104

FORTRAN IV 2-105
o e . o e o o • o @ • o • ° . • o e , o •

2.5.2ol UMPLOT Plotting Subroutine 2-105

2.5°2.2 FORTRAN Subroutines for Using 65K 2-105

SUPPORT 2-105. o o e o o i o • • . o o o • • o • • + o • •

2.5o3ol FORTRAN Preprocessor 2-105

2.5.3.2 Routines on the C1 Utility Tape 2-105

2+ 5+ 3 o3 WDOMFP-Octal Mnemonlc/Floating Point Core

Dump (Record No+ i) 2-106

2.5.3+4 MXMRGE-Merge Mods with SQUOZE

(Record No. 2) 2-106

2.5.3.5 IBTD-Tape Dump (Record No. 3) 2-106

2.5.3.6 PPTDAC-Tape Duplicate and Compare

(Record No. 5) 2-106

2.5.3.7 MXHSPR_Print High Speed from Log Tape

(Record No. 12) 2-106

2.5,3o8 MXPRLG_Select TTY Data from Log Tape

(Record No. 13) 2-107

7 September 1965 2-V

P_r_h

CONTENTS (Cont 'd)

2.5.3.9 MXCHER-Print Selected Subchannels from

Mercury Log (Record No. 14) 2-107

2.5.3.10 HSINY-Decode and Print High Speed from

Log Tape (Record No. 15) 2-107

2.5.3.11 MXPOCL-Print Mercury Log Tape in Octal

(Record No. 16) 2-107

2.5.3.12 MSHSPL-Log Tape Plotting Program

(Record No. 20) 2-107

2.5.3.13 GFCHEK-Checksum Corrector (Record No. '25)_ . 2-107

2.5.3.14 OHC01-Hollerith to OCT Pseudo-Op Card

Image (Record No. 27) 2-108

2.5.3.15 WDCTS-Card-to-Tape Simulator

(Record No. 32) 2-108

2.5.3.16 SUMMARY-Summarize SOS SQUOZE Tape Statistics

(Record No. 36) 2-108

2.5.3.17 COL8ER-Update Symbolic Tape, Produce Symbolic

from Listing Tape (Record No. 41) 2-108

2.5.3.18 MXILCO-Print Real-Time CORE Output

(Record No. 57) 2-108

2.5.3.19 SHARE Library Index 2-109

Figure

2-i

2-2

2-3
2-4

2-5

2-6

2-7

2-8
2-9

2-10

2-11

2-12

2-13

2-14

2-15
2-16

ILLUSTRATIONS

Flow Diagram of Combined iBSYS and FMS System Tape 2-3

IBSYS Control Cards Format 2-7

IBJOB Control Cards Format 2-13

IBLDR Control Cards Format 2-23

Operation of Overlay 2-26

FMS Control Cards Format 2-31

Sample FORTRAN IV Compilation, No Execution 2-37

Sample FORTRAN IV Execution Run from Binary Decks 2-38

Sample Multiple FORTRAN IV Compilations and IBMAP Assemblies. 2-39

Sample FORTRAN IV Compilations, IBMAP Assemblies,

Load Binary Decks 2-40

Sample FORTRAN IV Execute Programs from Binary Tape 2-41

Sample FORTRAN IV Modify PREST Decks and Execute 2-42

Sample FORTRAN IV Overlay Job 2-43

Sample FORTRAN IV Debug Execution 2-44

Sample FORTRAN II Execute 2-45

Sample FORTRAN iI Compile 2-46

7 September 1965 2-vi

Figure

2-17
2-18

2-19
2-20

ILLUSTRATIONS (Cont 'd)

Page

Sample FORTRAN II Compile and Execute 2-47

Sample FORTRAN II Compile and Execute with Binary
Subroutines 2-48

Sample FORTRAN II Compile, Assemble, and Execute 2-49

Sample FORTRAN II Compile, Execute, and Debug 2-50

Table

2-1

2-2

2-3
2-4

TABLES

Major Computer Equipment 2-4

Peripheral Equipment 2-5

7094 FORTRAN Documentation Listing 2-57

7094 FORTRAN Documentation Form-Number Index 2-69

Index

Chapter 2

INDEX

INDEX TO CHAPTER 2 Index 2-i

7 September1965 2-1

CHAPTER2

7094 FORTRANOPERATINGSYSTEM

2.1

2.1.1

70_4 FORTRAN SYSTEM DESCRIPTION

This chapter describes the 7094 FORTRAN Operating System and its use.

The 7094 FORTRAN system is available on all Goddard Space Flight Center

Data Systems Division large scale computers° An integral part of the

IBM 7094 Data Processing System, the 7094 FORTRAN system consists of

a comprehensive set of programming aids operating under a master System

Monitor as subsystems° The System Monitor consists of l) The System

Supervisor, 2) The System Core-Storage Dump Program, 3) The System

Editor, 4) The System Nucleus, and 5) The Input/Output Executor.

The 7094 FORTRAN Operating System is designed to process sequentially

a variety of unrelated jobs with little or no operator intervention.

With less human participation, jobs are processed more rapidly and

there is less likelihood of human error.

SYSTEM CONFIGURATION

The FORTRAN IV compiler and its associated assembly program, IBMAP, are

embedded in the IBSYS/IBJOB operating system on the 7094 data process-

ing equipment. This system is completely independent of the FORTRAN II

monitor system, FMSo However, the two systems have been combined onto

one tape which is now in use on the 7094 A, B, C, E, and F computers.

To make the two systems as compatible as possible, additional control

cards are used to enable either system to call in the other° Thus,

FORTRAN II and IW" Jobs may be batched on the same input tape. However,

each Job must operate wholly within one system or the other. Mixtures

7 September 1965 2-2

within a job are not permitted. Furthermore, the relocatable decks
produced by the two systems are not compatible, and standard subroutine
linkages are different. If FORTRANII jobs are to be converted to
FORTRANIV, the source program should be SIFTed and recompiledo (SIFT
is a program to convert FORTRANII language to FORTRANIVo)

The flow diagram (Figure 2-1) illustrates the various componentson
the system tape and the paths of control between them. The notations
on each line indicate the control card, statement, conditions, or
action which causes that path to be taken. For the sake of clarity,
this diagram is simplified and does not show all possible error returns,
restart, and recovery procedures, etc. It also omits the inter-component
logic of the FORTRANII Version III, IBSFAP, CT, SORT,90PAC,and IOCS
processors which are also on the tape and are controlled by IBSYSo

Tape assignments within IBSYS, IBJOB, etc., now conform to the FMS
assignments. Namely_ logical units 1 through lO correspond to A1 through
A10; ll through 20 to B1 through BlO; and 21 through 30 to C1 through
ClO. As with FMS, logical 2 is the standard input tape and logical 3
is standard print and punch output. Any other tapes used by a FORTRAN
IV program maybe either in a BCDmodeor a binary mode, but must never
be in a mixed mode; i.e., BCDbinary records on the sametape. Such a
tape can be written, but it is difficult to read. Symbolic tape unit
designation should also be avoided. Although permitted by the manual,
the following construction is undesirable as it is likely to cause
failures.

KTAPE= 7

WRITE (KTAPE, i00) A, B, C

All I/O activity in FORTRAN IV/IBMAP programs must be handled by IOCS.

The FORTRAN IV compiler sets this up automatically. However, it is

imperative that the IOCS manual, C28-6100-2, be consulted before attempt-

ing to perform I/O in a MAP language program°

For programming on FORTRAN IV, consult IBM 70_0/70_4 Prosrammin 6 Systems:

FORTRAN IV Language, Form C28-6274-4.

7 September1965 2-3

i

G
t- E

L_ W 0
Z j E

r _ _ :E w

,_. 1ooo

° °l I m a l'--"

| I Io_
, ol L Io_ o

_ o

./ n,.m I -.

z o _

• ul I <J I - _

t22_J

II-

lU
L:W ,v _

121

v ul

0 _I

J w

o

×

J

_ O

I1: 0:
o_

O _

Z _

Ig O

Z _
I1:121
D J
_- J

11: I.)

ixl
[-t

I1)
4._

o3

u3

r.D

H

II)

o
o

o

%

o

Od

a)

bD
-,--4

7 September 1965 2-4

2.1.2. MACHINE CONFIGURATION

The programmer using the Goddard Space Flight Center computer complex

has a vast quantity of data processing equipment at his disposal. The

IBSYS/FMS combined system operates on several of these large scale com-

puters. A partial list of this equipment is given in Table 2-1. In

addition to the major computer configurations, there exists an associ-

ated collection of peripheral equipment. A partial list of this equip-

ment is given in Table 2-2.

Table 2-i. Major Computer Equipment

Bldg
Loc.

14

14

3

1

Computer Memor_ Magnetic

Facility Size Tape Units

A-7094 65K 14-729-IV

B-7094 65K 14-729-IV

C-7094-II 65K 14-729-IV

E-7094-II 32K 12-729-IV

4-729-VI

F-7094 32K 12-729-IV

Line

Printer

716-I

716 -I

716 -I

716 -I

716 -I

Card

Reader

7223-I

7223-I

i7223-I

711-I

711-I

Card

Punch

721-I

721-I

Disk

1301-II

1301-II

1301-II

Data
Channel

3

3

3

2

2

DCC

Yes

Yes

Yes

No

No

7 September 1965 2-5

Table 2-2. Peripheral Equipment

Bldg.
LOC.

14

14

14

14

14

14

i

14

14

14

2O

3

3

Computer

Facility

A-IBM-I401

B-IBM-1401

C-IBM-1401

D-IBM-1401

E-IBM-1401

F-IBM-1401

IBM-1460

I-IBM-7010**

IBM-1401

CDC-3200"*

CDC-3200

CDC-160A

CDC -160A

Memory

Size

1.4K

8K

8K

4K

4K

8K

8K

100K

8K

16K

4K

4K

Magnetic

Tape Units

1-7330

2-7330

3-7330

2-7330

2-729-II

2 -729-II

4-729-VI***

2-729-IV***

8-729-IV

4-729-IV

5-6o7

2-603

2-603

Card

Read/Punch

14o2-I

1402-I

lO12-I*

1402-I

1402-I

1402-I

1402-I

1402-I

1402-1

4o5
523

Line

Printer

1403-II

1403-II

1403-II

1403-II

1403-II

1403-II

1403-III

1403-III

1403-II

5oi

166-2-**

*Paper tape reader/punch

**1301 disk

***Switchable units

7 September 1965 2-6

2.1.3

2.1.4

2.2

2.2.1

SYSTEM TAPE MAINTENANCE

The Programming Methods Section (PMS) of the Data Systems Division

has primary responsibility for maintaining the combined IBSYS/FMS

master tape. Tape revisions or updating occur periodically as a

result of one or more of the following conditions: l) new IBSYS

version or significant corrections released by IBM; 2) major changes

originating from GSFC programmers; and 3) catastrophic errors requir-

ing the immediate issuance of new tape.

In certain cases, when errors are of a minor consequence or unique to

a particular application and immediate release of a new master tape

is not warranted, the PMS provides binary decks to circumvent the

error condition. With the release of new master tapes, the decks

are subsequently discarded by the programmer.

ERROR REPORTING

The PMS has the responsibility of maintaining the combined IBSYS/FMS

system. Any questions regarding system utilization and system dis-

crepancies should be directed to PMS personnel. The current method

of reporting system discrepancies verbally is expeditious. However,

it is recommended that the Systems Discrepancy Report (see _orm l-l,

Chapter l) be used for submittal to the PMS coordinator, in this

way, a current file of all discrepancies will be maintained along

with the corrective actions taken° A copy of the Discrepancy Form

will be available in the PMS coordinating office (Room 127; Bldg. 3)

and in the dispatcher's office (Bldg. 1 and Bldg. 3)° Programmers

are requested to periodically check the Systems Status Report (see

Form 1-2, Chapter l) to insure satisfactory operational performance

from the system used°

DETAILED PROCEDURES

This section includes several illustrations showing Job deck compo-

sition for a number of typical runs; presents a description of the

control cards and their use; and offers means by which to use the

system effectively°

CONTROL CARDS FORMAT AND USAGE

This paragraph presents in detail a description of the control cards

that IBSYS; IBJOB_ IBLDR_ and FMS recognize. The user controls and

directs the processing of his Job by inserting the proper control cards

in the Job deck, thereby directing the Operating System to perform any

one of several operations° An illustration is provided depicting the

placement and categorizing of the importance of the control cards.

7 September1965 2-7

2.2.1.1 IBSYS Control Card Description

A dollar sign ($) in column i accompanies all IBSYS control cards.

Except for the comment card which has an asterisk, card function is

punched beginning in column 2, with no embedded blanks. All systems

on the tape recognize the $IBSYS card. This ensures control by IBSYS

of its control cards. These control cards are placed in any order,

but must follow an $IBSYS card. An $ID card is mandatory if the job

is to perform any meaningful processing. Figure 2-2 shows the IBSYS

control cards format.

SEE

PAR. 2.2.1.1 I

(i) $

(a) $

(3) $

(4) $

(s) $

(6) $

(7) $

2 3 4 5

I B S Y

I D L

J O B

E X E C

D A T E

P A U S

6 7 8 9 10 11 12 13 14

S

O D L O O O O L L

L O O L D D D

U T E

E

15 16 17 18 19 20 21

L

D OPIT ! O!FIS

SYSTEM NAME:
I

M M I D D Y Y
I

COMMENT

COMMENT
I

NOTE: CONTROL CARDS (I), (2), AND (4) ARE ESSENTIAL, (3) MAY BE USED

INTERCHANGEABLY WITH $1D CARD, (5) THROUGH (7) ARE USED

FREQUENTLY.

Figure 2-2. IBSYS Control Cards Format

7 September 1965 2-8

An individual description of IBSYScontrol cards is as follows:

(i) _IBSYS:

i 2 3 4 5 6 7 72

$ I B S Y S

This card reloads IBSYS and transfers control to its beginning. When

IBSYS recognizes this card, it initializes the I/O configuration, and

destroys the effect of any previous $ID or SDATE card.

(2) _ID Job Number Time Initials:

I 2 3 4 5 6 7 8

$ I D L o D L

I JOB
Z
I NUMBER

A job number, | consisting

9 10 II 12 13 14 15 16 72

O D O O L L L

RUN TIME INITIALS I

MINUTES | I

)f a letter, followed by two digits, and

T (testing), P (production), or R (rerun) is a requirement. The other

information is optional. Time is the estimated running time of the

job in minutes and Initials are the initials of the person submitting

the Job, as recognized by the Dispatcher.

(3) _OB Job Number Time Options:

I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 72

$ J O B L D O L D D D D OPTIONS

This card reloads IBSYS from the system tape and insures complete

initialization of the system at the expense of some additional exe-

cution time. Thus, SJOB must precede any SDATE, SEXECUTE, or other

control cards which have an initializing effect on the system. A

Job number, consisting of a letter, followed by two digits, and T, P,

or R, is a requirement. Time is the estimated running time in minutes.

7 September 1965 2-9

(4) SEXECUTE STstem Name:

I i 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 72

$ E X E C U T E SYSTEM NAME

This card causes the controlling element of the designated system to

be loaded, and control is transferred to it. The IBJOB monitor controls

FORTRAN IV, IBMAP, COBOL, and their loader, so that a FORTRAN IV run,

for example, must contain an $EXECUTE IBJOB card. The permissible

system names are:

SYSTEM NAME SYSTEM DESIGNATION

IBJOB for FORTRAN IV, !BMAP, COBOL

FORTRAN for FORTRAN II version IIl

IBSFAP for FAP under IBSYS using 10CS

CT for CommercialTranslator

SORT for 7090 Sort/Merge Processor

90PAC a commercial data processing

language processor

IOCS independent IOCS

NOTE: FORTRAN Ii version III is not the customary FORTRAN II

in use at Goddard Space Flight Center. It is FORTRAN II

operating under IBSYS, which imposes storage restrictions

on the object code, and contains no local modifications.

The usual FORTRAN II system is called by the SFMSYS con-

trol card.

(5) _DAT___E:

, 2 3 4 5 617 8 9 io ,i i2 '3i!4 i5 I6 17118ii9202i 22 72!

$DAiTE i M M D D Y Y

Columns 16-21 contain six digits representing the date. This date is

part of the output of the IBJOB system. The SDATE card is optional,

but once encountered, it remains effective until replaced by an $IBSYS,

SFMSYS or another SDATE card. If there is no SDATE card, the date of

some preceding job (if IBSYS has not been loaded in the meantime) or

the date of creation of the system tape is part of the output of the

IBJOB system.

7 September 1965 2-10

(6)
I 2 3 4 5 6 7 8 9 I0 il 12 13 14 15 16 72

$ _ COMMENTS

The contents of this card are printed on-line for communication with

the operator.

(7) _PAUSE:

$ P A U S I E l_ COMMENTS

This card causes the machine to halt. The operator presses the START

button to continue the Job. Since all control cards print on-line,

columns 16-72 may contain a message to the operator.

? September 1965 2-ii

2.2.1.2 IBJOB Control Card Description

The $IBJOB control card is the first card in an IBJOB deck (i.e.,

following an SEXECUTE IBJOB card). However, the $ID, SJOB, and/or

SDATE card can precede the $IBJOB card if IBSYS is unable to recog-

nize these cards. For example, several jobs can be run in succession

within the IBJOB framework, without going back to IBSYS between jobs.

An $IBFTC card precedes each FORTRAN IV source deck before compilation.

An $IBMAP card precedes each IBMAP symbolic or PREST deck to be assem-

bled. An $IBLDR card precedes each relocatable binary deck (that is,

for each individual subprogram).

FORTRAN IV compilations, IBMAP assemblies, and binary decks to be

loaded may be arranged in any order within a given job, provided

each subprogram is prefaced with an appropriate control card° The

order of deck placement determines the order of their storage in

memory, except as modified by $ORIGIN cards. The complete object

program deck is placed behind the $IBJOB card.

If the SENTRY card is used, it must be placed behind the object pro-

gram deck. SDATA card must be placed behind the SENTRY card, if

present, or behind the object program deck if there is no SENTRY card.

Any data cards which the object program expects to find on logical 2,

the standard input unit, are placed behind this SDATA card. If data

cards are present, an end-of-file card must follow them°

$* comment and SPAUSE cards may be placed anywhere in the deck that

IBJOB (or IBSYS) expects to find control cards° $IEDIT or $OEDIT

cards may be placed anywhere in the deck that IBJOB expects to find

control cards, provided they follow the $IBJOB card.

One or more *ALTER cards must follow any $IBMAP card which follows

an $IEDIT card containing the ALTER option. An *ENDAL card must

terminate the alter deck° The IBMAP symbolic or PREST deck must

follow the *ENDAL card unless an alternate input unit was also speci-

fied on the $IEDIT card° In this case, a matching $IBMAP card and

the symbolic or PREST deck must appear on the specified unit. Once

again, the ordering of the cards for altering a subprogram is: $IEDIT

with ALTER option_ $IBMAP, a succession of *ALTER card + symbolic

insertions_ *ENDAL, symbolic or PREST deck°

Following an $!EDIT card specifying an alternate input unit, all

FORTRAN source decks, IBMAP symbolic or PREST decks and relocatable

binary decks for which there are $IBMAP, $IBFTC, or $IBLDR cards in

the main input will be taken from specified alternate unit until

another $IEDIT card; an SENTRY card, SDATA, or an end-of-file is
encountered on the normal input unit° Alter decks are always taken

from the normal input unit° Each deck on the alternate unit must be

7 September 1965 2-12

prefaced with an $1BFTC,$1BMAP,or $1BLDRcard, as appropriate, on
which the deck namematches that of the corresponding control card
in the main input. They need not contain matching options. The
options specified on the control cards on the normal input unit will
be exercised; those on the alternate will be ignored. Figure 2-3
shows IBJOBcontrol cards format.

NOTE: All relocatable binary decks result-
ing from a compilation or assembly under
IBJOBwill contain at least two, and at most
five, automatically produced control cards.
These cards are considered part of the deck
and should never be removed#nor should the
deck be rearranged in any way. The first
card of the deck should be either STEXT,
SDDICT,or SFDICT(in that order of de-
creasing likelihood), and the last card
must always be a SDKEND.The system will
also punch out an $IBJOBcard for each
Job, and an $IBLDRcard ahead of each re-
locatable binary deck. These may be used
on subsequent runs or discarded according
to the user's needs.

7 September1965 2-13

SEE PAR. 2.2.1.2 I

(l) $ liB S: Y S

(2) $! ! D i L D

(3)$ J i O B

(4) $,i B J o B

(5)$ I B F T C

(6)$ I B M A P i
(7) $ I B L D R 1

;
(8) $ D A T A

(9) $ N A M E ,

(10) $ E N T R Y i
(11) $ O A T E

i
(,2) $ -,I(- i

(13) $ P A U S E

(14) $ I B R E L

(15) $! E D i T

(16) $ 0 E D I T

(,7) M

{,8)M III t

2 3 4 i S 6 7 8 9 10 II 12il3 14 15 16 17 18 19 20 21
i

I

I

D IL D D D D L , L L COMMENTS
' _ I I

LID D L

DECKNAME

1 1
DECKNAME

DECKNAME

i
1

I :
1

I i

t

1

D

' i;i

D :i D D OPTIONS

i OPTIONS

OPT I ONS

I

COUNT, OPTIONS

! i '

OPTIONS I,

Jt '1
' ' iOPTIONS

I

OP.TI IION S !

MIMID D Y Y

COMMENTS tI I
COMMENTS t

,]

-)[-- A L T E R N

! ,1-)1{- A L T E R i N , K

I I I
NOTE : CONTROL CARDS (I) THROUGH (7) ARE ESSENTIAL){CARDS (2) AND

(3) MAY BE USED INTERCHANGEABLY; HOWEVER (2)IS PREFERRE_;

(8) AND (10) THROUGH (13) ARE USED FREQUENTLY; (9) AND ([4)

THROUGH (19) ARE USED OCCASIONALLY.

Figure 2-3° IBJOB Control Card Format

7 September 1965 2-14

An individual description of IBJOBcontrol cards is as follows:

(l) IBSYS.

IBSYS is called in, replacing IBJOB, and control is transferred to
it. The System Supervisor is called in.

(2) $ID Job Number Time Initials

I12i3$ I D

415 611 7!1 8

iL D D!L

JOB
r
I

9 lo! II ,2

D D D D
i
ii

TIME

(MINUTES)

Etc. :

13 il4 ii5 16 72

L 'L I L COMMENTS

INITIALS

This card is described under IBSYS control cards. It is also recog-

nized by IBJOB to obviate the necessity of returning to IBSYS after

each Job.

(3) SJOB Job Number Time Options:

This card reloads IBSYS from the system tape and insures complete

initialization of the system at the expense of some additional exe-

cution time° Thus, SJOB must precede any $DATE, SEXECUTE, or other

control cards which have an initializing effect on the system. A

job number, consisting of a letter, followed by two digits, and C,

T, P, or R, is a requirement. Time is the estimated running time in

minutes.

(4) I OB:

_1 2 3____4_ 5t6 7 8 9 '01 " '2 '3 ,41,51,6 72

$ I B J O I B1 I I OPT,ONS

This card provides IBJOB with control information which governs the

processing of object decks in this Job. There are seven options:

(The standard options are underlined.)

7 September1965 2_15

1. GOor NOGO--GOinstructs the system to load and execute this
_ob when an--_NTRYcard or an end-of-file is encountered on the
input unit. NOGOsuppresses execution of the object code.

2" LOGICor NOLOGIC--LOGIC causes the off-line printout of the

origin and extent of each subprogram in the job (including library

routines), all symbolic references between various routines and

I/O buffer assignments. NOLOGIC suppresses this printout. The

use of the LOGIC option does not imply that the GO option must
also be used°

_. MAP or NOMAP--MAP provides a complete storage map of the object

program, to be printed off-line. NOMAP suppresses this printout.

The use of the MAP option does not imply that the GO option must
also be used°

4. FILES or NOFILES--FILES causes the off-line printing of a file

list showing all I/O unit assignments and tape mounting instruc-

tions applicable to this job. NOFILES suppresses this printout.

o FIOCS, LABELS BASIC, MINIMUM or IOEX--This option, governs

what portion of the IOCS package is to be made available to the

object program at execution time. LABEI_ is the full IOCS package

with labeling features. BASIC is the full IOCS package but with-

out labeling features. MININKTM is basic IOCS minus the routines

for handling internal files; for stringing buffer pools together;

for transferring input directly to output; for checkpoints and for

the hardware functions of write end-of-file, backspace file, back-

space record and rewind° IOEX is a trap supervisor. It does not

handle the initiation of I/O operations. FORTRAN IV programs re-

quire minimum IOCSo The use of ENDFILE_ BACKSPACE, or REWIND

statements in a3DRTRAN routine does not necessitate calling in
basic IOCSo

_o SOURCE or NOSOURCE--SOURCE informs the system that this job

contains at least one compilation or assembly. NOSOURCE tells the

system _hat this job contains only binary decks to be loaded° This

circumvents the system's need to transcribe binary decks onto a

scratch tape to hold them while compilations or assemblies are in

progress. NOSOL_CE _nning under the SOURCE option will be pro-

cessed correctly, but at the expense of some additional tape han-

dlingo NOSOURCE may not be used when the binary decks are obtained

from an alternate unit by means of an $IEDIT card.

_o FLOW or NOFLOW--This option applies to overlay jobs. The loader

detects inadmissable overlay structures, such as the existence of

7 September1965 2-16

CALLstatements which cause themselves to be overlaid. The FLOW
option causes error messagesto be printed (off-line) and the
execution to be deleted if such errors occur. NOFLOWpermits
execution to begin in spite of such errors, and suppresses the
printing of error messagesunless the LOGICoption is also used.

NOTE: GO, MAP,and LOGICare independent options. Any one or
any combination of these options will cause the object program
to be loaded as if for execution. However, execution will take
place only if the GOoption is exercised. If NOGO,NOMAP,and
NOLOGICare all in effect, loading is suppressed.

(5) _IBFTC Deck Name O_tions:

i 2 3 4 5 6 7 8 9110111112113114115 16 72
I I I I I I

$ I B F T C i IDE_KNI_MEI i i OPTIONS

Normally this card informs the system that the following deck is a

FORTRAN IV source program to be compiled° The $IEDIT card may be

used to inform the system that a FORTRAN IV source deck ready for

compilation is located on a specified alternate input unit. There

are six options: (The standard options are underlined.)

_. LIST, NOLIST, or _LIST--LIST indicates that an off-line list-

ing of the generated I_MAP codlng is desired. NOLIST suppresses

this listing as well as assembly error message printout. Compiler

errors are always printed. The LIST option produces a listing of

generated IBMAP coding without o_tal equivalents, and such that

the coding is read across the page, like a dump.

2o REF or NOREF®-REF indicates that a symbol cross-reference table

is wanted with the generated IBMAP listing. NOREF suppresses this

print. REF is ineffective if the NOLIST option is used.

_. DECK or NODECK-_DECK indicates that a relocatable binary object

deck for this subprogram is desired. It will be punched off-line.

NODECK suppresses this punch output.

. M90, M94, or M94/2-M90 instructs the compiler not to generate

any 7094 machine instructions in its compiled coding. M94 indicates

that the compiler may generate 7094 coding. M94/2 generates 7094

coding and EVEN pseudo-operations are treated as commentary.

_. XR3, XR4, XR5, XR6, or XR7--This option dictates the number of

index registers for which the compiler is allowed to generate coding

in the compiled program. A minimum of three index registers must

be allowed. Index registers will be selected in the order: l, 2,

3, 4, 5, 6, 7o

7 September1965 2-17

_6" NO__DDDD, SDD--Theseoptions refer to the debugging dictionary.
The standard option, NODDspecifies no debugging dictionary is
desired. For option DD, a full debugging dictionary is output°
The contents of the full dictionary are all symbols used in an
assembled program or for a FORTRANIV program, all statement
numbers, all programmer-specified symbols, and all symbols gener-
ated by IBFTC. The option, SDD,provides a short debugging dic-
tionary° 0nly these symbols specified by the MAPpseudo-operation
KEEPare output for assembled programs. Statement numbersand
programmer-specified symbols are output for FORTRANIV programs.

(6) $IBMAP Deck Name Count Options:

1 2 3 4 5 6 7 8 I 9li0] Iil12113j14]15 16 72
I

$ I B M A P DE:CKNAME COUNT
, , I I I I I OPTIONS

Normally this card informs the system that the deck to follow is an

IBMAP symbolic or PREST deck to be assembled. The $IEDIT card may

be used to inform the system that an IBMAP symbolic or PREST deck

ready for compilation is located on a specified alternate input unit.

A count of the approximate number of symbolic cards may be given,

starting in column 16. This helps to speed the assembly. It may

not exceed five digits° If a count is not given, a value of 2000 is

assumed. In this case, the options (if any) must be punched begin-

ning in column 16. There are eight options: (The standard options

are underlined.)

l° LIST or NOLIST--LIST indicates that an off-line assembly list-

ing is desired° NOLIST suppresses this listing as well as error

message print° (The LIST/NOLIST option also appears on the $IBFTC

card, but note that the standard option is reversed.)

2o REFor NOREF--REF indicates that a symbol cross-reference table

is wanted with the assembly listing° NOREF suppresses this print-

out. REF is ineffective if the NOLIST option is used. (The REF/

NOREF option also appears on the $IBFTC card, but note that the

standard option is reversed°)

_. DECK or NODECK--DECK indicates that a relocatable binary object

deck for this subprogram is desired° It is punched off-line.

NODECK suppresses this punch output°

_. M90, M94, or M94/2--M9C instructs the assembler to treat 7094

instruction mnemonics as macros, the expansion of which are defined

within the system° M94 indicates that 7094 op-codes are permissi-

ble. The M94/2 option must not be used, nor may the resulting

binary decks be used on 7094 A or B machines° These machines are

Model l's.

7 September 1965 2-18

_. RELM0______DD,ABSMODor SYSMOD--RELMODindicates that a relocatable
assembly is desired. ABSMODindicates that this is to be an abso-
lute assembly. SYSMODindicates that this is a special relocatable
assembly having absolute origins.

_. NO() or ()OK--NO() indicates that parentheses are to be treated

as illegal characters in an IBMAP symbol. However, only a warning

is produced, and the assembly is not aborted. ()OK indicates that

parentheses are permissible characters in an IBMAP symbol.

_o MFTC or NOMFTC--MFTC indicates that the macro definitions cor-

responding to the FORTRAN built-in functions are to be supplied

for this assembly. NOMFTC indicates that these macro definitions

are not wanted°

8. NOD____DD,DD or SDD--These options refer to the debugging diction-

ary. The standard option NODD specifies no debugging dictionary

is desired. For option DD, a full dictionary is output containing

all symbols used in the assembled program. Option SDD indicates

only a short debugging dictionary is desired° It contains only

those symbols specified by the MAP pseudo-operationKEEPo

(7) $IBLDR Deck Name Options:

I 2 S 4 5 6 7 8 9 10 II 12 13 14 15 16 72

OPTIONS$ I B L D R DECKNAME

Normally this card informs the system that a relocatable binary deck

follows or is to be obtained from the Library. The $IEDIT card may be

used to inform the system that a relocatable binary deck is located on

a specified alternate input unit° There are two options: (The standard

options are underlined°)

io LIBE or NOLIBE--LIBE indicates that the deck named is obtain-

able from the system libr_ryo In this case, the entire object

program must consist of routines supplied via $IBLDR cards with

the LIBE option° A mixture of LIBE and NOLIBE within a Job is

not permitted° NOLIBE indicates that the deck is scheduled next

on the standard input unit, or is obtainable from an alternate

input unit, if preceded by an $IEDIT card°

2. TEXT or NOTEXT_TEXT indicates that the text section (ioeo,

t-he actu-----alinstructions) of this deck is to be loaded° NOTEXT

indicates that the text section of this deck is to be ignored°

This permits the system to use dictionary sections of the deck

without consuming storage with its instructions.

7 September1965 2-19

(8) OA L A :

! 2 3 4 5 6 72

$ D A T A

This control card indicates the beginning of a data file on the input
unit.

(9)

I 2 3 4 5

$ N A M E

6 7 8 9 10 I! i2 13 14 IS 16 17 72

OPTIONS

This control card may be used to change the name of a file or control

section. Name changes maybe required when: l) the same name has

been used in different decks for two or more distinct file or control

sections, in which case one of them must be renamed with a distinct

name, and 2) two different names are used to refer to the same file

or control section, in which case one name is replaced by the other.

The variable option field consists of two alphameric names separated

by an equal sign, ioeo, ABC = XYZo The name on the left may be a

qualified external name which is to be replaced by the name on the

right. Files to be renamed must have the name and qualifier, if

specified, enclosed by quotation marks. A qualifier is defined as a

deck name, ioeo, DK1 (ABC) = XYZo If not qualified, external names

on the left are replaced by the name on the right whenever encountered.

If a name is qualified by a deck name, it is replaced by the name on

the right only in the deck named.

(!o)

I 2 3 4 5 6 7 8 9 10 li 12 i3 14 iS I6

$ E N T R Y NAME

72

This card, which is optional, governs the point in the object code

at which execution begins. If an SENTRY card is not used, or if an

SENTRY card with a blank name field is supplied, the loader will seek

the control section name (six periods) and transfer to it.

(NOTE: A FORTRAN IV main routine will have this name as its entry

point.) if the name cannot be found, the system will begin

executing the object program at the first entry point of the first

subprogram in the input deck° if execution is to begin at some other

point, an SENTRY card containing a name punched beginning in column

16 must be supplied° This name may bc an external name (i.e., it

7 September1965 2-20

appears in somecontrol section--an entry point) to which the initial
transfer is made, or it maybe a deck name,in which case, the initial
transfer will be madeto the standar_ entry point of that deck.

(ii)

(2)

(13)

SDATE: As described in Paragraph 2.2o1.1 (i)o

$*: As described in Paragraph 2,,2oi.1 (6).

_PAUSE: As described in Paragraph 2.2.1.1 (7).

(14) _IBREL:

| 2 3 4 5 6 7 72

$ I B R E L

This control card indicates that no more compilations or assemblies

follow on the System Input Unit. The IBJOB Processor Monitor then

reads in and transfers control to the Loader. The $IBREL card has the

effect of negating the SOURCE option on the $IBJOB card because no

further compilation or assemblies are performed after it is encountered.

(15) _IEDIT:

I 2 3 4 5 6 7 8 9 101 li 12 13 i4 15 16 72

OPTIONS$ I E D I T

This card instructs the system that a deviation from normal input pro-

cedures is forthcoming. With it, an alternate input tape may be brought

into action and/or the presence of alter cards may be signalled. The

effect of an $IEDIT card continues until another $IEDIT card with

different options is encountered.

There are three options: (The standard options are underlined.)

i. SYSINI, SYSCKI, SYSCK2, SYSLB2, SYSLB3, SYSLB4--This option

d--esignates the I/0 unit on which the source, symbolic, PREST,

or relocatable decks may be found for each subsequent $IBFTC,

$IBMAP, or $IBLDR card encountered on SYSINI. Unless SYSINI is

the designated unit, all decks on the unit designated must be

prefaced with an $1BFTC_ $IBMAP, or $1BLDR card, as appropriate,

on which the deck name matches that appearing on the $IBFTC,

$IBMAP_ or $IBLDR card on SYSINI. (SYSINI is the standard input

unit.)

2. SRCH or NOSRCH--SRCH indicates that the system must search

_he alternate input unit to find an $IBFTC, $IBMAP, or $IBLDR

card with a matching deck n_ne. (SYSIN1 must not be searched.)

NOSRCH indicates that the deslgnated alternate unit is correctly

positioned to read the next deck.

7 September 1965 2-21

_. ALTERor NOALTER: ALTER indicates that an alter deck will

be found on SYSIN1 immediately following all subsequent $IBMAP

cards until another $IEDIT card is encountered, or until the

end of this job. NOALTER indicates that there are no alter
cards.

I 2 3 4 5 6

$ 0 F D I T

7 8 9 10 I1 12 |3 14 15 16 72

OPTIONS

This card signals an impending change in the normal output operation.

With it, an alternate unit may be selected for off-line print, and/or

PREST decks may be obtained. There are three options: (The standard
options are underlined.)

i. SYSOU1, SYSCKI, SYSCK2, SYSLB2, SYSLB3, SYSLB4®-This option

d--esignates the I/0 unit to be used for off-line print output

for the remainder of the job, or until another $OEDIT card is

encountered. SYSOUI is the normal output unit.

2. PREST or NOPREST--PREST indicates that a PREST deck for all

following symbolic input decks to the assembler is to be punched

off-line° Relocatable binary decks may also be obtained or de-

leted in the usual manner. NOPREST indicates that a PREST deck
is not wanted°

3. CPREST, NOCPR--CPREST indicates that a PREST deck for all

following source input decks to the compiler is to be punched

off-line. NOCPR indicates that a PREST deck is not wanted. If

both PREST and CPREST are specified in the $OEDIT card that pre-

cedes a source deck, both compiler input and output are written
off=line in PREST form.

NOTE: PREST is a BCD representative of a symbolic program as

supplied or as compiled by FORTRAN° Insignificant blanks are

deleted. PREST decks are punched out in column binary card

format, but the information contained in each binary data word

is to be interpreted as BCDo PREST decks are identified by 2,

3, 4, 5, 7, and 9 punches in column I° Relocatable decks (IBJOB

format-=not FORTRAN Ii) will not have a 2 punch in column i,

and there will be various combinations of 3_ 4, and 5 punches to

identify various sections of the deck. If column 1 contains a

1 punch_ it is not an IBJOB deck.

7 September 1965 2-22

(17) m *ALTER n:

! 2 3 4 5 6 7 8 9 10 !1 12 13 14 15 16 17
M _' A L T E R N

72

This is one form of alter cards that defines the exact point for making

modifications in a symbolic program. (This card is not strictly a

control card.) The alter point is found by combining m and n to form

a string of up to eight characters. This is matched against the label

punched into columns 73-80 of the symbolic deck being altered (ignoring

any leading blanks) or if a PREST deck is being altered, against the

instruction line label printed on the original listing° Any symbolic

cards following the *ALTER card, up to but not including the next

*ALTER or *ENDAL card, are inserted into the deck Just preceding the

machine word corresponding to the matched label°

(18) m *ALTER ntk:

I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19, 72

M _ A L T E R N , K I

This form of the *ALTER card matches labels mn and mk, and the original

coding from the line labeled mn to the one labeled mk, inclusive, is

deleted. If symbolic cards follow the *ALTER card (preceding the *ENDAL

card), they are inserted into this holeo

(19) *ENDAL:

8 9 10 II 12 13

f E N D A L

The use of this trailer card is required to terminate an alter deck°

T September 1965 2-23

2.2.1.3 IBLDR Control Card Description

All IBLDR control cards have a dollar sign ($) in column i. ControJ

card function is punched in column 2 with no embedded blanks. Deck

name_ if required, is punched beginning in column 8. Any additional

information required is punched beginning in column 16, with no em-

bedded blanks.

See Paragraph 2.2.1.2 for a discussion of $1BLDR and SENTRY cards.

Although recognized by IBJOB, these cards are also passed along to

IBLDR for further processing. SLABEL cards may be placed anyvhere

in the deck that IBJOB expects to find control cards, providing they

occur after the $1BJOB card. IBJOB recognizes SLABEL only to the

extent of making it available to the loader. $ORIGIN and $1NCLUDE

cards may be placed immediately before any $1BFTC, $1BMAP, or $1BLDR

cards in the deck. Figure 2-4 shows the IBLDR control cards format.

SEE

PAR. 2.2.1.3 l 2 3 4 5

(1) $! B L D

(2) $ E N T R

(3) $ O R I G

(4)$ I N C L

(5) $ L A B E

illo , j91ol
I I i

R DECK_[AME

Y

I N

U D E

L

14 15 I6117118

OF]T IOIINS

OI_T I OINS

S' MB?LS
I i

19 20 21

OP11ONS

NOTE CONTROL CARD (I) IS ESSENTIAL, (2) IS USED FREQUENTLY; (3) THROUGH

(5) ARE USED OCCASIONALLY.

Figure 2-_. iBLDR Control Cards Format

7 September 1965 2-24

An individual description of the IBLDRcontrol cards is as follows:

(1) $IBLDR Deck Name Options: See Paragraph 2.2.1.2(7).

(2) SENTRY Name: See Paragraph 2.2.1.2(10).

(3) _ORIGIN Symbol Options:

I 2 3 4 5 6 7 8 9 I0 II

$ O R l G l N

12 13 14 15 16 72

SYM BOLS,
OPTIONS

This card is used to define the beginning of each link of an overlay

job. Overlay is a feature which permits the execution o± jobs which

exceed memory capacity. Several subprograms or sets of subprograms

may be relocated by the loader so as to occupy the same portion of

core memory. Each such segment of the program (i.e., each link) is

recorded on tape, and during execution various links are automatically

called into memory as needed.

The symbol punched beginning in column 16 is a string of from one to

six alphanumeric characters. The six special characters ()=,/. may

not be used. A symbol is mandatory on every $0RIGIN card. In addition

to this logical origin symbol, there are three options: (The standard

options are underlined°)

i. Absolute Origin, Octal Location_-To specify an absolute origin,
D

punch from one to five numeric characters indicating the decimal

memory location at which the following routine is to be origi-

nated. To specify octal location, punch an alphabetic 0_ follow-

ed by one to five digits representing the octal value.

2o SYSU_., SYSUT3, SYSLB2, SYSLB3; SYSLB4, SYSCKI, SYSCK2, or

_T2, UT3, LB2, I.B3; LB4, CKI, CK2--This option specifies the I/O

unit on which the following llnk is to be written. It is assumed

that the unit is in ready status and that. it is used only to

contain overlay links during job execution.

_. REW or NOREW-_REW indicates that the I/0 unit containing

this link is to be rewound after loading each time this link is

called for during execution. NOREW suppresses these rewinds.

The operation of overlay is best illustrated by an example. At least

one subprogram is required in the job which remains in memory at all

times (it must not be overlaid). This subprogram is link 0 or the

main link. The decks comprising link 0 are placed physically in front

of all other decks in the Job. Following link 0, an $ORIGIN card

appears; and it contains a symbol which the loader associates with

7 September 1965 2-25

the next available memorylocation (or with the absolute origin, if
specified). In this situation, it is an $ORIGINALPHACard as shown
in Figure 2-5. Following this $ORIGINcard, the decks comprising any
one of the links issuing from this origin must appear. If two or more
links issue from the llnk just described, an $ORIGINcard with a new
origin symbol must appear next, and it must be followed by all the
decks for any one of the links originating at that point. Thus, the
correct positioning of $ORIGINcards is important only for the first
occurrence of each origin symbol. Parallel links headed by $ORIGIN
cards containing symbols already defined maybe placed anywhere in
the deck so long as each complete llnk is kept together and the defi-
nition of new origin symbols is not disturbed. However, the ordering
of decks will affect the order in which the links are written onto
tape. The various links mayall be written on the sametape, or they
maybe distributed amongseveral tapes.

In Figure 2-5, link 0 consists of two decks not preceded by an $ORIGIN
card. Links l, 4, 5, and 6 must each be preceded by an $ORIGINALPHA
card. Links 2 and 3 must each be preceded by an $ORIGINBETAcard.
Links 7 and 8 must each be preceded by an @ORIGINGAMMAcard. Links
9 and lO must each be preceded by an $ORIGINDELTAcard. Link 0 must
be followed by either link l, 4, 5, or 6o Link l, whenever it occurs
in the input deck, must be followed by either link 2 or link 3. Link
6 must be followed by link 7 or 8. Link 8 must be followed by link
9 or 10o

The subdivision of the object program into overlay links does not re-
quire any special coding since the system automatically handles the
loading of links as they are needed. However, there are certain obvi-
ous situations which cannot be handled and must be avoided by the user.
For example_ a routine in one llnk maynot CALLa routine in another link
since this might induce an overlay which will wipe out the CALL°
Also, overlay is initiated only by CALLstatements and function usage
(or the FOR_ANfunction subprogram type)° A data reference to a sym-
bol contained in the control section of a routine within a dependent
llnk is permissible only if a preceding CALLor function reference has
guaranteed the loading of that link.

(4) _INCLUDE Name i Name 2 Name 3 oo.:

1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 72

$ I N C L U D E NAME:I, NAME2,
ETC.

This card specifies that the decks and/or the control sections named

starting in column 16 are to be included in the link in which this

$INCLUDE card appears_ rather than in the link to which they would

normally be assigned° The names specified may be either deck names

7 September 1965 2-26

DECK I DECK 2

I I
LINK

DECK 14

LINK 6

IORIGiN GAMMA I

DECK 18

LINK 8

DECK 21

LINK I_

DECK 19

RIGIN DELTA I

DECK 2/e_

LINK 9

DECK 15 DECK 16

I
LINK 7

DECK 12 DECK 13

LINK 5

DECK 9 DECK IN DECK II

I I

DECK 3

LINK I

LINK 4

DECK 8

I
LINK 3

DECK 7

I ORIGIN ALPHA I

DECK 4 DECK 5

I I

J ORIGIN B'ETA I

LINK 2

DECK 17

J

DECK 6

I

Figure 2-5. Operation of Overlay

7 September1965 2-27

(usually library subroutines) or real control sections namesof non-
zero length (usually a block of data or coding).

If a library subroutine is specified, its deck name,not one of its
entry points, must be given. Normally, all library subroutines used
by the job will automatically be loaded with the main link so that they
are available to all subsequent links. A library subroutine may, how-
ever, be assigned to a dependent link by meansof an $INCLUDEcontrol
card. A subroutine or control section maynot be loaded in more than
one link. If it is called from more than one link, it must be loaded
in a higher level link that is available to all calling links. The
library routines oFPTRP,oLXCON,and .LOVRYmust be allowed to load
with the main linko

(5) LABEL 'Filename' Serial Reel When Name:

! 2 3 4 5 6 7 8 9 I0 !1 12 13 14 15 16

$ L A B E L LABELLING

72

This card is used to provide labeling information to IOCS when the

LABELS option of the $IBJOB card is exercised (see Paragraph 2.2.1o2

(5)_.). It is an exception to the usual control card format in that

all information must be supplied in the exact order indicated° The

three interior items--serial, reel, and when--are optional and may be

deleted. However, the punctuation is essential° There must always be

four commas, in addition to any that may appear in 'filename' or name.

No blanks are permitted from column 16 through the fourth comma.

i. 'Filename_--This is the symbolic name of the file to which

this information applies, enclosed between apostrophes° The first

apostrophe must be punched in column 16° Maximum length of this
item is 18 characters.

2° Serial--This is an alphanumeric field of five or less charac_

ters. Input labels are checked against this serial value, if

present. Output labels will contain this serial value, provided

the reel option is greater than one. Output serials, in the

absence of this option, are normally taken from the label already

present on the first output reel.

_. Reel--This is a numeric field of four or less characters. It
indicates the reel sequence number of the first reel of a file.

If omitted, the sequence number is assumed to be zero for input

files, or one for output files. The actual reel sequence number

is adjusted at object time to reflect reel switching, and it is

checked in standard input labels.

7 September 1965 2-28

A. When--This field is used for checking a standard input label.

if it is" omitted_ the date is not checked. If it is present,

either of two forms may be used. In the first form, the date is

represented by y/d, where y is two digits representing the year,

and d is the day of the year. Thus, December 6, 1963, would

appear as 63/340.

In the second form, a numeric field of four or less digits repre-

sents the number of days a tape is to be retained from the date

on which it was written. An attempt to write a labeled file on

this tape before the end of the retention period will result in

an on-llne error message.

_. Nam____e--Thisis a field consisting of 18 alphanumeric charac-

ters among which blanks are permitted. Input labels are checked

against this name, and output files are labeled with this name.

If completely blank, the label is not checked for input files,

or the existing label is retained for output files.

7 September 1965 2-29

2.2.1.4 FMS Control Card Description

The $1BSYS card has $1BSYS punched in columns i to 6. All other FMS

control cards have an asterisk (*) in column 1. On the FMS identifi-

cation cards, columns 2-72 are available for punching optional infor-

mation. On all other FMS control cards, card function is punched be-

ginning in column 7. Blanks are permitted° On the * DATE card, 2

slashes and 2 digits for the year are required. The month and day may

each be represented by zero, one or two digits.

If an $1BSYS card appears in the deck, no other FMS control card may

appear between it and a $FMSYS card. In an FMS job, * DATE, if used,
must be the first card in the deck with an * identification card im-

mediately following it. If the * DATE is not used, the * identification

card must be first. An * identification card is mandatory for FMS runs°

• XEQ and/or * FORMAP, if used, in either order, must immediately follow

the * identification card.

The control cards * LIST, * LIST8, * CARDS COLUMN, * CARDS ROW, * ROW,

• LABEL, * LIBE, * SYMBOL TABLE and * FAP apply to individual subpro-

gram compilations or assemblies. The source or symbolic deck for each

subprogram to be compiled or assembled must be preceded by any control

cards of this group which the user may want to include. They may be

in any order except the * FAP card which must immediately precede the

symbolic deck to which it applies.

* LIST, * LIST8, * LIBE, and * SYMBOL TABLE are ineffective for FAP

assemblies. Assembly listings are produced automatically without a

control card. The debug facilities are inoperative with FAP routines.

Source and symbolic decks with their control cards are placed in any

sequence behind the * identification, * XEQ and/or * FORMAP cards, but

before any debug, binary, or data cards which may appear in the job.

The * DEBUG card, if used, must be placed immediately behind the last

source or symbolic deck, if any, or behind the * identification, * XEQ

and/or * FORMAP cards if there are no compilations or assemblies. Any

and all debug request cards are placed immediately behind the * DEBUG
control card.

Any binary decks to be loaded must be placed, in any sequence, behind

the debug request cards, if any, or behind the last source or symbolic

card if there are no debug requests, or behind the * identification,

• XEQ and/or * FORMAP if there are neither source nor symbolic_r debug
cards.

Any data to be read by the program from logical unit 2 must be preceded

by _ * DATA card° The * DATA card and its accompanying data deck must

7 September 1965 2-30

be placed behind all the above mentioned cards, Joe., following all
source, symbolic, debug, and binary cards° The DATAcard is not
neededwhen there are non-execute runs, or when the object program
does not read from logical 2. The deck must terminate with an endm
of-file card (7 and 8 punches in column 1)o

* commentand/or *PAUSEcards maybe placed at any point in the deck
at which the system expects control cards, provided they occur behind
the * identification card and ahead of any and all * DEBUG9 binary,
and/or * DATAcards in the deck, as the case maybe. For chain Jobs,
the source, symbolic, debug, and binary cards for each chain link are
sequencedas described above, with the appropriate control cards for
individual subprogramsand debug decks. A * CHAINcard must be placed
in front of the deck for each chain link. These decks are sequenced
in the desired order and placed behind the * XEQcard and in front of
the * DATAcard, or end-of-file card if there is no * DATAcard°
Figure 2-6 showsthe FMScontrol cards format.

7 September 196 5 2-31

SEE PAR. 2. 2. !. 4 I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 I7 18 19 20 2i

(I) $, B S Y S

(2) _,' IDENTIFICATION

(3) ,'_ i

(5)

(6)

(7) "_ C O L U M N

(8)

(9) -_-

(!o)

(,,)

(,2) _-
('3) 2/_ COMMENT

(14)-_ ' P A U S E

(15) '_ L A B E L

(16) _ C H A 1 N

(17) _ L I B E

(18) _ C A R D S R O W

i(,9) {- R o w

NOTE CONTROL CARDS (I) THROUGH (9) ARE ESSENTIAL; (10) THROUGH (14)

ARE USED FREQUENTLY; (15) THROUGH (19) ARE USED OCCASIONALLY.

X E Q

F O R M A P

L I S T

L I S T 8

C A R D S

F A P

D A T A

D A T E M M / O O / y y

S Y M B O L T A B L E

D E B U G

Figure 2_6o FMS Control Cards Format

7 September 1965 2-32

An individual description of FMS control cards is as follows:

(1) IBsYs:
! 2 3 4 5 6 7 72

$ l B S Y S

IBSYS is called in, replacing FMS, and control is transferred to it.

(2) * Identification:

I 2 72

IDENTIF ICATION

This card is mandatory for any job which operates under FMS° Columns

2 to 72 may be filled with optional information which is reproduced

by the system on the output listing for that job.

(3) * XEQ:

I 2 3 4 5 6 7 8 9 10

'_ X E Q

72

This card informs FMS that the following job is to be loaded and exe-

cuted after completing any compilations and/or assemblies for which

there are source and/or symbolic decks.

(4) * FO_':

i 2 3 4 5 6 7 8 9 10 Ii i2 13 72

.._i F O R M A P

In an execution run, a memory map is printed off-line indicating names,

locations, and entry points for all subprograms in the job (including

library routines used), the extent of COMMON_ and the amount of vacant

storage°

(5) * LIST:

i 2 3 4 5 6 7 8 9 l0 il

L U S "r

72

7 September 1965 2-33

The system is instructed to print a symbolic FAP listing of the FORTRAN

program following this card, after it has been compiled. The generated

listing is printed three columns of instructions per page.

(6) * LIST8:

! 2 3 4 5 6 7 8 9 I0 II 12

L I S T 8

72

Same as * LIST except that the listing is printed in two columns with

the octal representation of each instruction.

(7) * CARDS COLUMN:

I 2 3 4 5 6 7 8 9 10 ii 12 13 14 15 16 17 18 19 72

C A R D S C O L U M N

This card causes a column binary relocatable deck to be punched off-

line for the source or symbolic program following this card, after it

has been compiled or assembled.

(8) * ?AP:

I 2 3 4 5 6 7 8 9 10

"_ F A P

This card identifies the symbolic deck that follows it to be assembled

as a machine language program by FAPo

(9) * DATA:

! 2 3 4 5 6 7 8 9 i0 ii

D A T A

72

This card identifies those cards that follow as data cards to be read

during object program execution. It is not needed for non-execute

jobs, nor those requiring no data on logical 2.

7 September 1965 2-34

(10) * DATE:

i 2 3 4 5 6 7 8 9 I0 II 12 13 14 15 16 17 18 19 72

"_ D A T E M M / D D / Y Y

The date supplied on this card is printed on each page of output

generated by the system for the job.

(11) * SYMBOL TABLE:

I 2 "3 4 5 6 7 8 9 10 I! 12 13 14 15 16 17 18 19

S Y M B O L T A B L E

72

This card causes the system to punch (off-line) a symbol table for

the FORTRAN source program following it after it has been compiled.

The symbol table is required by the debug package if debug requests

are to be embedded in this particular subprogram.

(12) * DEBUG:

I 2 3 4 5 6 7 8 9 10 II 12 72

-_ D E B U G

This card identifies the cards that follow as debug requests. The

interpretation of debug requests stops when a binary card, * DATA

card, or end-of-file is encountered.

(13) * comment:

I 2 72

"_ COMMENT

The contents of this card are printed on-line and off-line.

(14) * PAUSE:

I 2 3 4 5 6 7 8 9 10 II 12 72

-_ P A S EU

This card causes the machine to halto The job is continued by instruc-

tirgthe operator to press the START button. Since all control cards

are printed on-line, columns 12-72 may contain a message to the

operator.

7 September 1965 2-35

(15) * LABEL:

I 2 3 4 5 6 7 8 9 I0 I! 12

:_ L A B E L

72

The relocatable binary cards produced as a result of the compilation

or assembly of the deck following this card will be labeled and seri-

alized in columns 73-80. The label punched in columns 73-78 for a

FORTRAN compilation will be taken from columns 2=7 of the first card

of the source deck (excluding other control cards) provided this card

has a C in column 1. Otherwise, the subprogram name is used (000000

for a main routine). For FAP assemblies, columns 2-7 of the page

title card will be used as a label. The cards will be serially num-

bered in columns 79 and 80, beginning with 00 and recycling when 99

is reached. However, if the label does not use all of columns 73-78,

serial numbering will occupy all unused columns at the end of the

label, recycling when 10n-1 is reached (where n is the number of

columns available). Symbol tables and all subroutines obtained with

the deck (i.e., LIBE) will be labeled with their own names.

(16) * CHAIN< or,

! 2 3 4 5 6 7 8 9 i0 li i2 72

"_ C H A I N

This card identifies all cards that follow until another * CHAIN, a

• DATA_ or end-of=file is encountered, as a chain link. R is an

identifying label for the tape record which will contain this link,

and must be an integer greater than 0 and less than 32,768. T is the

actual unit designation of the tape on which this link is to be record-

ed° Units BI, B3_ and A4 are the only ones which may be used. The

argument T in the * CF_!N control card may be one of these physical

unit designations_ or one may use simply the digits 2, 3, or 4,

respectively. Either notation is acceptable° The argument T in the

CALL CHAIN statement within the program must use the external logical

unit designations for these tapes, namely 12, 13, or 4, respectively.

(17) * LIBE:

! 2 3 4 5 6 7 8 9 M0 II 72

i-'_" L | B E

This card causes the Monitor to search the library following a com-

pilation, and punch out relocatable decks for any Library subroutine

required by the subprogram just compiled°

7 September1965 2-36

(18) * CARDS ROW:

I 2 3 4 5 6 7 8 9 Iolll 12 13 ,4 15!16 721
! IA ols owl
I I

Row binary cards are punched off-line for the compilation or assembly

to which this control card is applied. If the routine compiled is a

FORTRAN main routine, a nine card BSS loader will be punched out ahead

of the deck, and a transfer card at the end. (A FORTRAN II transfer

card has a 9 punch in column 1.)

(19) * ROW:

I 2 3 4 5 6

Same as CARDS ROW.

7 8 9 10 72

R O W

D 7 September 1965 2-37

D

2.2.2 DECK STRUCTURE

2.2.2 .i

Deck order is directly related to performance order. The first

function to be performed should have its cards before the second

function to be performed, and so on. The following sample decks

illustrate various operations to be performed under IBSYS or FMS

control.

FORTRAN IV--Compilations_ No Execution

Routine XYZ is to be compiled for the 7094 Data Processing System.

A relocatable binary deck is output; nothing else. Since no options

are specified in the $1BJOB and $1BFTC cards, this is equivalent to

cards in which the standard options are punched; namely:

$1BJOB NOG0,NOLOGIC,NOMAP,NOFILES,MINIMUM,SOURCE,FLOW

and

$1BFTC XYZ NOLIST,NOREF,DECK,M94,XR7,NODD

Similarly, in all following examples, where a standard option is

called for, it does not appear in the control card. The SDATE card

is always optional, but its inclusion is recommended.

'r(END--OF--F I LE CARD)

$_AE__FORTRAN IV SOURCE DECK)

$1BFTC XYZ

IBJOB

ECUTE IBJOB

E 110763 "

SPAUSE

_ $1D COZT 5 BO543M,X5809, COMPILATION OF ROUTINE XYZ

r$ I BSYS

\

Figure 2-7. Sample FORTRAN IV Compilation, No Execution

7 September1965 2-38

2.2.2.2 FORTRAN IV--Execution Run from Binary Decks

Execution run from binary decks begins with the subprogram, MAIN.

The programmer desires a storage map. His program reads data cards

from logical unit 2.

END--OF--FILE CARD)

DATA CARDS)

;DATA

;ENTRY MAIN

RELOCATABLE BINARY DECK FOR SUBPROGRAM LAST)

$1BLDR LAST

RELOCATABLE BINARY DECK FOR SUBPROGRAM NEXT)

NEXT

RELOCATABLE BINARY DECK FOR SUBPROGRAM MAIN)

;IBLDR MAIN

RELOCATABLE BINARY DECK FOR SUBPROGRAM SUB)

$ IBLDR SUB

_I BJOB GO, MAP, NOSOURCE

SEXECUTE IBJOB

;DATE 102063

;PAUSE

$1D FOIP 30 JB543M

IBSYS

Figure 2-8. Sample FORTRAN IV Execution Run from Binary Decks

7 September1965 2-39

2.2.2.3 Multiple FORTRAN IV Compilations and ll_WAPAssemblies

Execution begins with the main routine, if any; otherwise, it begins

with SUBI. These routines are to be compiled/assembled for the 7094

DPS, using all seven index registers. There are approximately 550

cards to illustrate the I_&_P language routine which uses FORTRAN

macros. Do not consider symbols in parentheses as errors. A list-

ing of all subprograms except SUBI is wanted.

END--OF--FILE CARD)

SOURCE DECK FOR FORTRAN IV SUBPROGRAM SUBN

$1BFTC SUBN LIST

SOURCE DECK FOR FORTRAN IV SUBPROGRAM SUB3)

;IBFTC SUB3 LIST

SYMBOLIC DECK FOR IBMAP SUBPROGRAM SUB2)

;IBMAP SUB2 550, MFTC, ()OK

SOURCE DECK FOR FORTRAN IV SUBPROGRAM SUBI)

IBFTC SUBI

,IBJOB GO

,EXECUTE IBJOB

;DATE 122563

rSE

$1D CO8T

$1BSYS

I0 CH543M

\

_igure 2-9. Sample Multiple FORTRAN IV Compilations and II_P Assemblies

7 September1965 2-)40

2.2.2.4 FORTRAN IV--Compilation a I_P Assemblies t Load Binary Decks

This deck performs several functions, such as l) FORTRAN IV compil-

ing, 2) IBMAP assembling, and 3) loading relocatable binary decks.

It executes the object program beginning with subprogram P4. Data

from logical 2 are read during execution. A storage map and logic

listing are desired, as well as a printout of the symbol cross-

reference table for all compilations and assignments; and no punched

output for routine P3 are desired. Only 3 index registers may be

used when compiling (assembling) for the 7094 DPS. No FORTRAN

macros are desired in IBMAP routine P5; they are desired for routine

P6. A PREST deck is to be punched for P5, in addition to the re-

locatable binary deck.

E CARD)

(DATA CARDS)

_ DATA
NTRY P4

_(SYMBOLIC DECK FOR IBMAP SUBPROGRAM P6)

$OEID IT${1_ Y]_ OL_ PREST.........................)

pTABLE4 BINARY DECK FOB SUBPROGRAM P4

/01BL;;E CP_K$ 'BLOR)

'S I BFTC P3 REF, NODECK ,XR3, LIST

/

(/(SOURCE DECK FOR FORTRAN IV SUBPROGRAM P2)

L:$1BFTC P2 REF,XR3 ,LIST

ATABLE BINARY DECK FOR SUBPBOGBAM P_)

ilBLDR PIJOB LOGIC, MAP ,GO

SPAUSE

$1O CO2T060 TO543M

51BSYS

Figure 2-10. Sample FORTRAN IV Compilations, IBMAP Assemblies, Load Binary Decks

7 September1965

2.2.2.5 FORTRAN IV--Execute Programs from Binary Tape

A programmer has his tape containing many previously compiled or

assembled subprograms, with a suitable control card preceding each

routine. He may want to select five of these routines which are

interdependent and execute them beginning with the one named STARTX.

The decks for STARTX, ORBIT, and INTEG are known to be consecutive

on this tape. Do not load routine DUMMY. However, it is called to

define its COMMON definitions, etc., in memory ahead of all other

routines in the job. Data cards are to be read from logical unit 2.

f(END--OF--FILE CARD)

/(DATA CARDS)

J SDATA

SENTRY STARTX

J $1BLDR INTEG

$1BLDR ORBIT

J $1EDIT SYSCK I

J $1BLDR STARTX

J $1BLDR DIFCOR

$1BLDR DUMMY NOTEXT

J $1EDIT SYSCKI , SRCH

, S IBJOB GO

J $EXECUTE IBJOB

I SPAUSE MOUNT TAPE NO.2302 ON UNiT A5.SET DENSITY LOW.

J $1D C01P 25 HH547C

$1BSYS \

\
\
\

\

Figure 2-11. Sample FORTRAN IV Execute Programs from Binary Tape

7 September1965 2-42

2.2.2.6 FORTRAN IV--Modify PREST Decks and Execute

A programmer has a symbolic deck for subroutine FLAP and a PREST

deck for subroutine CLAP on alternate tape No. 2300. In addition,

a PREST deck for subroutine WHAP and a relocatable deck for subrou-

tine SLAP are to be included with the input deck. There are ALTERs

for FLAP and WHAP, and the routines are to be loaded in this order--

WHAP, FLAP, CLAP, SLAP. No punch output is desired except a PREST

deck for FLAP. Execution is to begin with the first entry point of

routine WHAP. No input is read from logical 2 during execution.

END--OF--FILE CARD)

RELOCATABLE BINARY DECK FOR SUBROUTINE SLAP

IBLDR SLAP

t;IEDIT

E.IBMAP CLAP 8000 . NODECK

SYSCK2

ENDAL

• ALTER 88.92

7732 NODECK

$OEDIT PREST

_IEDIT SYSCK2 ALTER

IF 85 IS ALL SET UP. PRESS

_/2A_IiPREST DECK FOR SUBROUTINE WHAP)
ENDAL

TICKS TIX TICSIIII NEW INSTRUCTION TO BE INSERTED

2 • ALTER 60.61 DELETE LINES 260.261.INSERT FOLLOWING

ER 30.34 DELETE LINES 30THRU 34

STD THAT NEW INSTRUCTION TO BE ADDEDLA THIS

• ALTER 17 ADD THE FOLLOWING BEFORE LINE 17IBMAP WHAP 3000 . NODECK

._ $1EDIT - ALTER

$ IBJO8 GO

$EXECUTE IBJOB

(SPAUSE

$ • COMES TO THE NEXT HALT,

/._ $• MOUNTED,HIGH DENSITIED AND READY WHEN THE MACHINE

_{ $ • DEAR OPERATOR. TAPE 2300 GOES ON B5 I PLEASE HAVE

r$1D G30T 05 GC543M

\

$1BSYS

Figure 2-12. Sample FORTRAN IV Modify PREST Decks and Execute

7 September1965 2-43

2.2.2.7 FORTRAN IV--0verlay Job

For simplicity, it is assumed that relocatable binary decks are

available for all subprograms. However, this is not a requirement.

The main link (or link 0) consists of two decks, ZORBA and GLESPY.

Each of two dependent links is to begin immediately after the main

link. Of these, link I consists of two decks, CASEY and MAGGIE; and

link 2 consists of one deck, KILDAR. Links 3 and 4 are each to

occupy core immediately following KILDAR. Link 3 consists of one

deck, SPOCK; and link 4 consists of two decks, JEKYLL and HYA_2,

plus the library FDMD, FLOG, and FATN. Links i and 2 are to be

written on SYSUT2; links 3 and 4 on SYSUT3. During execution,

SYSUT2 is to be rewound each time after link 2 is loaded, but not

after link i (since the tape will be properly positioned to read

link 2). Similarly for SYSUT2 and links 3 and 4.

(:::72:t::::

IBLOR HYATT K FOR ROUTINE HYATT

_LOCATABLE BINARy DECK FOR .,UTCNE JEKYLL1

_IBLDR JEKYLL

_O_IGrN DA_, '

_LE BINARy DECK FOR _OUTINE SPOCKJ

_IBLDR SPOCK

_ORIGIN DAAWINSYSUT3

_FOR _OUTINE KILDAR)

_I_LDR KtL_AR

(_OBIGIN SPECIE._EW

_REL_ATABLE BINARy DECK FOR _OUTINE MAGGIE_

SIBLDR CASEYORIGIN SPECIE

4RELOCATABLE BINARy DECK FOR ROUTINE GLESpy)

_RELOCATABLE BINARy DECK FOR ROUTINE 20RBA)

(_IBLDR ZORBA

C BIBJOB GO,NOSOURCE

(-- $ EXECUTE IBJOB

_DATE OIO264

SPAUSE(/
. BID COIP 15 05S43S

_IBSYB

Figure 2-13. Sample FORTRAN IV Overlay Job

7 September1965 2-44

2.2.2.8 FORTRAN IV--Debu_ Execution

The deck structure specifies that the main program MAIN and the

subroutine SUBR, written in FORTRAN IV source language, are to be

compiled and executed. Further, the debugging option has been

specified. Whenever statement 20 in the main program or statement

12 in the subroutine are executed, control is transferred to the

debug package. At this time, BETA or GAMMA are dumped and control

is returned to the calling routine.

END--OF--FILE CARD

RTRAN IV SOURCE DECK)

TC SUBR SOD

RTRAN IV SOURCE DECK)

TC MAIN SDD

UMP GAMMA

ME XI = NEW (K)

I.oTu SUB \DUMP BETA

_" NAME AI = NEW (F)

_1' DEBUG MAIN 20

"F_ $1BDBL TRAP MAX=5, LINE MAX'-'I0

,_ $ I BJOB GO

J SEXECUTE IBJOB

J SDATE 71965

J PAUSE \
./ S JOB C02T060 TD543M ,,

$1BSYS

\
\

/

Figure 2-14. Sample FORTRAN IV Debug Execution

7 September1965 2-_5

2.2.2.9 FORTRAN ll--Execute

The decks of binary cards are loaded and the program executed. The

PAUSE card is required by operations. It causes a halt to occur,

during which time the programming may inform the computer operator

of any necessary action he must take.

END--OF--FILE CARD 7--8 PUNCH COLUMN I

INARY PROGRAMS

PAUSE

XEQ

IDENTIFICATION (NAME, PROJECT NO. & EXTENSION
DATE 12--25--65

Figure 2-15. Sample FORTRAN II Execute

7 September1965 2-46

2.2.2.10 FORTRAN II-- Compile

The FORTRAN II program is compiled. The output requested is a relo-

catable column binary deck to be punched off-line and a FAP listing

of the program along with the octal representation of each instruc-

tion.

jND--OF--FILE CARD 7--8 PUNCH COLUMN I

ORTRAN PROGRAM WITH END CARD

LIST8

CARDS COLUMN

PAUSE

IDENTIFICATION CARD (NAME, PROJECT NO. & EXTENSION)

DATE 12--25--65

Figure 2-16. Sample FORTRAN II Compile

7 September1965 2-_7

2.2.2.11 FORTRAN II--Compile and Execute

The FORTRAN II source language program is to be compiled and exe-

cuted. A symbolic FAP listing of the program is required. Row

binary for the compiled FORTRAN main routine along with a nine-card

BSS loader deck are to be punched out off-line. During the execu-

tion of the object program, information contained on the data cards
is to be read in.

END--OF--FILE CARD 7--8 PUNCH COLUMN IDATA DECK

DATA

FORTRAN PROGRAM WITH END CARD

J :'1, LIST8 (OR LIST)

J _ CARDS COLUMN

• PAUSE

XEQ

IDENTIFICATION CARD(NAME,PROJECT NO. ,& EXTENSION) _

DATE 12--25--65

Figure 2-17. Sample FORTRAN II Compile and Execute

7 September1965 2-48

2.2.2.12 FORTRAN ll--Compile and Execute with Binar_ Subroutines

The FORTRAN program is to be compiled and the deck(s) of binary

subroutines are to be loaded before execution of the program. A

FAP listing is requested and a relocatable column binary deck of

the program is to be punched off-line. The binary subroutines must

be in column binary form.

_j_END--OF--FILE CARD 7--8 PUNCH COLUMN !
INARY ROUTINES

COMMENT CARD

./ FORTRAN PROGRAM WITH END CARD
LIST8

CARDS COLUMN

' PAUSE

XEQ

IDENTIFICATION CARD (NAME, PROJECT NO. 8{ EXTENSION

DATE 12--25--65

Figure 2-18. Sample FORTRAN II Compile and Execute with Binary Subroutines

7 September1965 2-49

2.2.2.13 FORTRAN ll--Compile_ Assemble_ and Execute

The FORTRAN II source language program is to be compiled. The

following FAP language program is to be assembled. The complete

object program is to be executed during which time the data cards

are loaded. A FAP listing and a relocatable column binary deck are

requested.

END--OF--FILE CARD 7--8 PUNCH COLUMN I

IS DATA PUNCHED IN CARDS

DATA

FAP DECK WITH END CARD

FAP

CARDS COLUMN

COMMENT CARD

FORTRAN PROGRAM WITH END CARD

LIST8

CARDS COLUMN

PAUSE

XEQ

IDENTIFICATION (NAME, PROJECT NUMBER, AND EXTENSION_

DATE 12--25--65

\

Figure 2-19. Sample FORTRAN II Compile, Assemble, and Execute

7 September1965 2-50

2.2.2.14 FORTRAN ll--Compile t Execute_ and Debu_

The FORTRAN II program is to be compiled and executed. A symbol

table, required for debuggingjand a memory map are requested. The

debugging option is specified and will occur at statement 60 in the

FORTRAN program. The variable MA and MB are to be dumped the first

time statement 60 is executed up to a maximum of four times.

rEND--OF--FILE CARD 7--8 PUNCH COLUMN I

_F 60 DUMP 104 $ MA, MB(I--120)

(SUBPROGRAM NAME, IF OMITTED MAIN PROGRAM)

DEBUG

FORTRAN II PROGRAM WITH END

pAUSE

XEQ

ORMAP

MBOL TABLE

ICATION (NAME, PROJECT NUMBER, EXTENSION)

DATE 12--25--65 \
I

Figure 2-20. Sample FORTRAN II Compile, Execute, and Debug I

7 September 1965 2-51

2.2.3

2.2.3.1

PROGRAMMING AIDS

This paragraph presents to the programmer tips and techniques as well

as precautions to be considered while performing programming fUnctions.

These programming aids should be of help to the programmer in his

utilization of the 7094 FORTRAN system.

FORTRAN II

(i) FORTRAN II Diagnostic: The FORTRAN II double-precision square

root produces a diagnostic when given a negative argument and exe_

cution is terminated. The reaction to double-precision division by

zero has been modified such that a diagnostic is printed off-line,

but the program is continued. The quotient will be set equal to the

largest DP value the 7094 can represent (i.e., MSH = 377 7777777778,
LSH = 344 7777777778).

(2) FORTRAN II Dump Routines: The FORTRAN II dump routine attempts

a recovery if a tape check occurs during the dumping process. This

applies to PDUMP, as well as DUMP. It also will produce dumps of B

Core for programs which use 65K. The programmer may call both B Core

(or a portion thereof) using CALL DUMP or CALL PDUMP by specifying

format code 5, 6, 7, or 8 instead of O, l, 2, or 3, respectively.

Multiple sets of arguments may be used within the CALL, but all re-

quests from A Core should be given first. Once a reference to B Core

is encountered in executing any such call (scanning left to right),

all requests to the right will be taken from B Core regardless of the

format code given. B Core dumps may also be initiated from the con®

sole by depressing Key 19.

(3) IODINE Disk Routine: A disk routine, IODINE_ is available from

the FORTRAN II system lfbrary. There is a writeup outlining its usage.

The explicit programming standards for the use of disk exist° Users

of IODINE (or any other disk I/O routine) must be aware of these

standards° (See DSD _e_qrandum, "130! __._s_ Standards", dated 4/27/64.)

(4) UMPLOT: A version of UMPLOT compatible with FORTRAN IV and IOCS

exists on the system library under IBJOBo It is used for both FORTRAN

II and IVo UMPLOT has been in existence on the FORTRAN II library.

(See Paragraph 2o5ol for complete description.)

7 September 1965 2-52

2.2.3.2 FOR_N _

(i) Accuracy of FORTRAN IV Library Mathematical Subroutines: There

is available a set of accuracy estimates for the mathematical sub-

routines in the FORTRAN IV library (IBLIB). These estimates are

derived from test results using in many cases a large number of

selected points in the range of each subroutine. The following

contains these estimates for most of the single precision, double

precision and complex routines in the library.

l,

m

Single Precision

a. XPl/Exponential-FXPT Base-FXPT Exponent--Tests run for

2x where X = l, 2, , 27 gave a relative error_ 1 x lO _

Tests run for lOx where X = l, 2, , lO showed no error

b. XP2/Exponential-FLPT Base-FXPT Exponent--Tests run for

lOx where X = ! l, ! 2, , Z 33 gave a maximum relative

error = 4 x l0 _

C. FXP_/Exponential-FLPT Base-FLPT Exponent--Tests run for

2x where X = ! l, _ 2, , ! 39 gave a maximum relative

error = 3 x lO -v

d. FXPF/Floatin5 Point Natural Exponential--Tests run for a

larger number of selected points gave a relative error:

2 x lO Ixl < lO

5 x lO _ lO _ IXl < 65

5 xlO Ixl < 88

eQ FLOG/Floating Point Logarithm--Tests run for a large number

of selected points in the range lO -ss < x < l0ss yielded a

relative error = 1 x lO _, except in the neighborhood of

X = l, where the absolute error was = 1 x l0 _

7 September1965 2-53

2_

f_ FATNIFloatin$ Point Arctangent--ATAN(X), Tests run for a

larger number of selected points in the range IXl < 10000

gave a relative error_ 1 x lO _

For values of X of the order l0 -_, ATAN(X) = X

ATAN2_7,_, Tests run for Y = 2M - i, M = _ i, _ 2, , _ i0

Z = Z i, Z 2, , t 60 and

Tests run for Y =.2M, M = ! 26, ! 27, _ d 54

Z = ! 61, ! 62, , ! I00 gave a

relative error_ i x i0 _

g° FSCN/Floating Point Sine and Cosine--Tests run for SIN(X)

and COS(X) for a large number of selected points with

0 _ X _ n/2 gave an absolute error_ 1 x lO _ for SIN(X)

and an absolute error _ 5 x lO _ for COS(X)

h. FSQR/Floating Point Square Root--Tests run for a large

number of selected points in the range lO -B8 < x < lO 3s

gave a relative error _ 1 x lO _

Double Precision

a. FDXl/Double Precision and Complex Exponential Functions--FDXl,

Tests run for i0xX = _ i_ _ 2, , _ 33 gave a maximal

relative error _ 6 x i0 -Is

CXPI, Tests run for (i0 + lOi) x where X = _ i, _ 2, , ! 33,

gave a relative error_ i x i0 _ for both the real and imaginary

parts of the result.

ba FDX2/Double Precision Exponential Function--Tests run for a

large number of selected points with bases 2j i0, e_ gave a

relative error _ 9 x i0 -Is for IXI < i0 and a

relative error _ 7 x i0 -Is for i0 5 IXl < 65

7 September 1965 2-54

i,

Co FDXP/Double Precision Natural Exponential Function--Tests

run for a large number of selected points gave:

relative error _ 7 x lO "Is for IXl < l0

relative error_ 5 x l0 -zs for lO < IXl < 65

relative error _ 5 x lO "14 for-70< X < 88

d. FDSQ/Double Precision Square Root Function--Tests run for

a large number of selected points in the range lO "29 <

X < los 7 gave a relative error_ 1 x lO "Is

e. FDLG/Double Precison Logarithmic Function--Tests run for

a large number of selected points in the range lO -ms <

X < lO -3s gave a relative error 5 x lO -zs except in the

neighborhood of X = l, where the absolute error was

3 x i0 -zs

f. FDSC/Double Precision Sine and Cosine Functions--Tests

run for values of X = (3On) ° n = O, 1,2, ,12 gave

a maximal absolute error = 5 x i0 -Is

Complex

a. FCAB/CompIex Absolute Value--Tests run for a large

number of selected points gave a relative error

3 x lO _ whenever the relative error in X Y¥ or was
< 1 x lO -e

b o

C •

FCLG/Complex Natural Logarithm--Tests run for a large

number of selected points in the range 1 < X, Y <_ lO00

gave a relative error _ 4 x lO "s in the real part and

1 x lO -a in the imaginary part of the result (provided

the relative error in X Y
or _ was < 1 x i0 "e)

FCSQ/Complex Square Root--Tests run for a large number

of selected points in the range lO -39 iX, Y ! l0ss

gave a relative error _ 3 x lO _ whenever the relative

Y
error in _was ! 1 x 10 _ and no overflow or underflow

occurred upon squaring of X and/or Y.

7 September1965 2-55

2.2.3.3

(2) Binary Mode Ta_e 0_erations: In FORTRAN IV, where the state-

ments REWIND i and/or BACKSPACE i are used to manipulate binary mode

tapes, it was necessary to add 301o to the logical unit number. For

example, to WRITE (17) ... , REWIND 47 was required when using

Version 8. This is not required under Version 12.

(3) Punch Statement--FORTRAN IV: FORTRAN IV punch statements will

produce card decks off-line. That is, card images will be recorded

on the output tape and will be recognized as such by the 1401. The

1401 must backspace and reread each time a mode change is encountered.

In the interests of off-line efficiency, group punching operations

together whenever practical.

(4) DUMP/PDUMP Routine: The DUMP/PDUMP routine under IBJOB has an

additional entry point to permit the programmer to obtain a full core

dump (32K) within FORTRAN IV programs. This is accomplished by exe-

cuting the statement:

CALL FPDUMP (A, B, I)

where A and B are dummy arguments and may be any variable names defined

within that subprogram. I is the format code (0, l, 2, or 3).

(5) IBSYS Debug: Version 12 provides the FORTRAN IV feature of input-

output without explicit LIST and FORMAT, as described in IBM manual

C28-6377. Version 12 also incorporates the debugging facilities de-

scribed in the IBJOB manual C28-6247-4, and in the supplementary

debugging manual C28-6362-1. An additional tape, B10, is required

when debugging features are used. The programmer should indicate BlO

on his job request card. This unit designation may be reassigned if

necessary (e.g., for using debug in programs which may be using logical

20, or in which there are no free drives on channel B). Note, however,

that debug refers to this unit as SYSCK2, which is also an optional

overlay tape° Conflicts here can be resolved by changing the choice

of the overlay tape.

(6) UMPLOT: A version of UMPLOT compatible with FORTRAN IV and IOCS

exists on the system library under IBJOB. UMPLOT has been in existence

on the FORTRAN II library. (See Paragraph 2.5.1 for complete descrip-

tion.)

65K Dump Routine_-0perating Instructions

Operating instructions for the FORTRAN system tape dump routines are

as follows:

7 September 1965 2-56

2.2.3.4

2.2.3.5

a. format and limits in keys of console
b. lower limit in decrement
c. upper limit in address
d. format in keys i and 2 as follows:

0peration Keyl

octal up up

octal with mnemonics down up

floating point up down

decimal integer down down

Key 20 down indicates that another dump request is to follow. The

7094 will stop with HTR 67344 to allow the keys to be reset. When

key 20 is up, B CORE is dumped. The dump from B CORE will be in the

same format as the last dump from A CORE.

A zero in both the address and the decrement causes A CORE and B CORE

to be dumped. To dump only B CORE 3 put key 19 down (without key 20

down) when the last portion of A CORE is dumped.

7094 Machine Lansua6e I/0

All programming shortcuts on the 7090/94 Mod I are not applicable

on the 7094 Mod II. On the 7090/94 Mod I, the non-data-select in-

structions (BSR, BSF, REQ, RUN, and WEF) require only that the channel

and unit be specified. On the 7094 Mod II, the full address is re-

quired. For example, to manipulate unit B6 with an instruction on

the 7090/94 Mod I, the octal configuration 2006 in the address is

sufficient. However, on the 7094 Mod II, the full address (2206 or

2226 octal) must be given. Otherwise, the machine will hang up.

Normally, the correct address is generated by the assembly program

(e.g., if REWB 6 is written). If the programmer wants to compute

a variable unit address to store in an instruction writte_ for ex-

ample, REW**, the program must supply the full address in order for

it to run properly on the 7094 Mod II.

Channel Tape Assignments

Under IBSYS, B(1), the first available unit on channel B is B5. A(1)

is A5 and C(1) is CI. The system symbolic unit references are listed

below. The BIO unit is required when the debug package is specified.

AI SYSLBI; A2 SYSINI; A3 SYSOUI; A4 SYSUTI

BI SYSUT2; B2 SYSUT3; B3 SYSUT4; B4 SYSPPI; BI0 SYSCK2

7 September 1965 2-57

2.3 BIBLIOGRAPHY

This section provides the user access to the list of documents describ-

ing the major components of the IBM 7090/7094 FORTRAN Operating System°

For each document there is provided an abstract along with a table llst-

ing each document (Table 2-3) and a form-number index of each document

(Table 2-4) for cross-referencing purposeso

Table 2-3. 7094 FORTRAN Documentation Listing

PARAGRAPH

2.3.1

2.3.1.i

i2.3.L.2

2.3.2.4

2.3.2.5

2.3.3.

2,3.3.1

2,3.3.2

2o3.3o3

2°3°4

2.3.4°i

2°3°4°2

IBM 7090/7094 SYSTEMS REFERENCE LIBRARY

7094 Data Processing System Configurator

7094 Model II Configurator

MACHINE SYSTEM

7094 Data Processing System--Principles

of Operation

IBM 7094 Model II Data Processing System

IBM 729, 7330, and 727 Magnetic Tape

Units--Principles of Operation

IBM 1301 and 1302 Disk Storage:

Sequential Data Organization

IBM 1301 and 1302 Disk Storage_ Models

i and 2_ with the 7090, 7094, and

7094 Model II Data Processing Systems

PROGRAMMING SYST_4S

Catalog of Programs for IBM Data

Processing Systems--KWiC Index

IBM 7090/7094 Programming Systems:

FORTRAN II Assembly Program (FAP)

IBM 7090/7094 Programming Systems:

FORM N0o

A22-6689

A22-6764

A22-6703

A22-6760

A22-6589

A22 -6784

A22-6785

C20-8090

C28-6235-3

C28-6311-3

Macro Assembly Program (MAP)

COBOL

COBOL--General Information Manual

IBM 7090/7094 Programming Systems:

Processor Part 5: COBOL Compiler (IBCBC)

FORTRAN

IBM 7090/7094 Progra_ning Systems:

FORTRAN II Programming

IBJOB

F'28-8053
J28-6260

C28-6054

PAGE NO

2-59
2-59
2-59

2-60

2-61

2-62
2-62

2-62

2-62

2-63

2-63

2-63

7 September 1965 2-58

Table 2-3. 7094 FORTRAN Documentation Listing (Cont'd)

P_G_H

2.3.5.4

2.3.5.5

2.3.5.6

2.3.5.7

2.3.5.8

2.3.5.9

2.3.5.10

_2.3.5.11

2.3.5.12

_2.3.5.13

2.3.5.14

2.3.5.15

2.3.6

2.3.6.1

2.3.6.2

2.3.6.3

2.3.6.4

2.3.6.5

IBM 7090/7094 Programming Systems:

FORTRAN II Operations

IBM 7090/7094 FORTRAN IV Compiler (IBFTC)

Replacement: Specifications and

Language Additions

FORTRAN

IBM 7090/7094 Programming Systems:

FORTRAN IV Language

IBM 7090/7094 IBSYS Operating System:

IBJOB Processor

IBM 7090/7094 IBSYS Operating System:

Specifications for IBJOB Processor

Debugging Package

7090/7094 PROGRAMMING SYSTEMS : IBJOB

Processor, Overlay Feature of IBLDR

IBM 7090/7094 IBSYS Operating System:

Input/0utput Control System

IBM 7090/7094 IBSYS Operating System:

Utilities

IBM 7090/7094 Generalized Sorting

System: 7090/7094 Sort

IBM 7090/7094 IBSYS Operating System:

System Monitor (YBSYS)

IBM 7090/7094 IBSYS Operating System:

Operator's Guide

IBM 7090/7094 IBSYS Operating System:

Symbolic Update Program--Preliminary

Specifications

IBM 7090/7094 FORTRAN IV Language:

Input/Output without Explicit

List and Format

INSTALLATION SUPPLIES

7094 Reference Card

COBOL Program Sheet

COBOL Reference Card

IBM 7040/_4-7090/94 Symbolic

Language-Coding Sheet

FORTRAN Coding Form

FORM NO.

C28-6606-6

C28-6376

F28-8074- 3

C28-6274-4

C28-6275-4

C28-6362-I

C28-6331

C28-6345-2

C28-6364-3

with

N28-OI25-D

C28-6307

C28-6248-2

C28-6355

c28-6386-3

C28-6377

X22-6691

X28-1464

X28-1520

X28-6333

X28-7327

PAGE NO,

2-64

2-64

2-64

2-65

2-65

2-65

2-65

2-65

2-66

2-66

2-66

2-67

2-67

2-67

2-68

2-68

2-68

2-68

2-68

2-68

7 September 1965 2-59

2.3.1.2

IBM 7090/7094 SYST_4S REFERENCE LIBRARY

7094 Data Processing System Confi6urator

F0rmA22-668 _

This is a _hematic drawing depicting the overall 7094 Data Processing

System. Whenever new features are incorporated for the 7094 system,

these changes will be reflected in the drawing via publication change

notices.

IBM 7094 Model II Confisurator

Form A22-6764

This is a schematic drawing depicting the overall 7094 Model II Data

Processing System. Whenever new features are incorporated for the

7094-II system, these changes will be reflected in the drawing via

publication change notices.

7 September1965 2-60

2.3.2.2

2.3.2.3

2.3.2.4

MACHINE SYSTEM

7094 Data Processin 5 System--Principles of Operation

Form A22-6703

This manual explains in detail the computer instructions, commands,

and orders required for the operation of the 7094 system. In addition,

it provides information about the units associated with the 7094 system.

It expounds upon the use of the IBM 1301 Disk Storage, the IBM 1414-6

Input/0utput Synchronizer, and the IBM 7340 Hypertape Drive; discusses

the IBM 7909 Data Channel Interrupt features; and presents operating

techniques for the Data Channel and Operator consoles.

IBM 7094 Model II Data Processin5 System (Bulletin)

Form A22-6760

This bulletin describes the main features of the 7094 Model II Data

processing System. It contains a sample instruction sequence to

illustrate the reduction of core storage cycles through extended

sequence overlap operations. It also includes a listing of instruction

cycle changes and a table of instructions that can be overlapped.

IBM 729; 7330; and 727 Masnetic Tape Units--Principles of Operation

Form A22-6589

This manual presents a complete description on the use of the various

magnetic tape units° It covers the procedures for tape unit load and

unload, tape error recovery and handling of tape during system usage;

principles of writing and reading coded data on magnetic tape; operation

of keys and lights; organization of tape records and reels, tape label-

ing and tape library records; and use of equipment associated with

magnetic tapes°

IBM 1301 and 1302 Disk Stora6e: Sequential Data Organization

Form A22-678_

This manual presents a different approach to the storing and the

retrieving of data on the IBM 1301 and 1302 Disk Storage. It explains

how all data files in disk storage can use a common set of programs

and techniques. Even though data are loaded sequentially, retrieval

can be either in a random or sequential manner° An index, created as

the data file is loaded, associates data identifiers with actual track

addresses. Conversion is accomplished from data handling methods

presently in use°

7 September1965 2-61

2.3.2.5 IBM 1301 and 1302 Disk Stora6e t Models I and 22 with the 7090,

70942 and 7094 Model II Data Processin6 Systems

Form A22-6785

This manual contains a general description of the IBM Disk Storage

Units 1301 and 1302, Models 1 and 2, in their association with the

IBM 7090, 7094, and 7094 II DataProcessing Systems. The reader

should be versed in these data processing systems.

7 September1965 2-62

2.3.3.2

2.3.3.3

PROGRAMMINGSYSTEMS

Catalo6 of Pro6rams for IBM Data Processing Systems-- KWIC Index

Form C20-8090

This catalog is divided into four main sections: l) This section

tells how to order programs from the IBM Program Information Depart-

ment and from the Program Distribution Center. 2) This section has

an index in both Keyword-in-Content (KWIC) format and classification

code format. 3 & 4) These sections provide abstracts describing each

program available from the IBM Program Information Department and

from the Program Distribution Center, respectively.

IBM 7090/7094 Programming Systems: FORTRAN II Assembly Program (FAP)

Form C28-6235-3

This publication provides enough information to the programmer con-

cerning the 7090/709 h FORTRAN II Assembly Program (FAP) so that it

enables him to code in the FAP language. FAP is a machlne-oriented

symbolic language. The major part of the program can be written in

either FORTRAN or FAPo When programming in FORTRAN, FAP subroutines

are used when FORTRAN is unsuitable. When programming in FAP, FORTRAN

subroutines are useful for certain computational and input/output

operations. FAP and FORTRAN can be used with the IBM FORTRAN Monitor

or the IBM 7090/7094 IBSYS System Monitor.

IBM 7090/7094 Programming Systems: Macro Assembly Program (MAP) Language

Form C28-6311-3

This publication has three main parts: I) This part provides detailed

information on the 7090/7094 Macro Assembly Program (MAP) language.

The MAP language provides the user with an extensive set of pseudo-

operations along with all of the 7090 and 7094 machine operations.

2) This part describes the functions of the pseudo-operations and

cites examples of their formats and uses. 3) This part describes

macro operations and macro-related pseudo-operations and expounds

upon their use in programs. Since the Macro Assembly Program (IBMAP)

is a component of the 7090/7094 IBJOB Processor, it operates under

the IBJOB Processor.

7 September1965 2-63

2.3.4.2

COBOL

COBOL_- General Information Manual

Form F28-8053

This manual describes the COBOL language (Common Business Oriented

Language) as developed under the auspices of the Department of Defense

and other Federal Government agencies, the Conference of Data Systems

Languages (CODASYL) and computer manufacturers.

IBM 70_0/7094 Programming Systems: IBJOB Processor Part 5: COBOL

Compiler (IBCBC)

Form J28-6260

This bulletin describes in full those elements of the COBOL language

that appear in the initial version of the 7090/7094 COBOL Compiler

(IBCBC), a component of the IBJOB Processor. This is the fifth of

several bulletins that comprise the IBJOB Processor manual.

7 September1965 2-64

2.3.5.2

2.3.5.3

2.3.5.4

FORTRAN

IBM 7090/7094 Pro_rammin_ Systems: FORTRAN II Programming

Form C28-6054

This publication undertakes to tell users of what sources are avail-
able to translate FORTRAN II statements into machine language state-

ments. This is accomplished by using either the FORTRAN II Processor

operating under the System Monitor of the 7090/7094 IBSYS Operating

System or the independent FORTRAN Monitor System. The IBM Formula

Translating System, 7090/7094 FORTRAN, is an automatic coding system

for the IBM 7090/7094 Data Processing System.

IBM 70_0/7094 Pro_rammin 6 Systems: FORTRAN II Operations

Form C28-6066-6

The purpose of this publication is to provide instructions for the

operation and use of the IBM 7090/7094 FORTRAN II System. It also

tells how the FORTRAN II System tape is produced and maintained.

Included in the FORTRAN System are the FAP (FORTRAN Assembly Program)

Assembler, the FORTRAN II Monitor, and the FORTRAN II Compiler. The

compilation, assembly, and execution of FORTRAN and FAP programs are

coordinated by the FORTRAN II Monitor.

IBM 7090/7094 FORTRAN IV Compiler (IBFTC) Replacement: Specifications

and Lan6ua6e Additions
Form C28-6376

This publication provides enough information for the programmer to

enable him to make the transition from the present FORTRAN IV Compiler

to the new 7090/7094 FORTRAN IV Compiler (IBFTC). The new compiler

will operate practically within the same manner in respect to the

present IBJOB Processor. Four new language features are provided for

the FORTRAN IV language. They include l) up to seven dimensions for

arrays, 2) nonstandard returns from subroutines, 3) multiple entry

points to a subprogram, and 4) input/output without an explicit input/

output list and format statement.

FORTRAN

Form F28-8074-3

This manual presents a description of FORTRAN° FORTRAN is a high-level

problem-oriented computer language that is available for most IBM Data

Processing Systems°

7 September 1965 2-65

2.3.5.5

2.3.5.6

2.3.5.7

2.3.5.8

2.3.5.9

IBM 7090/7094 Programming Systems: FORTRAN IV Language

Form C28-6274-4

This publication undertakes to describe the FORTRAN IV language and

provides a description of the format and effect of arithmetic, control,

input/output, and specification statements. It also cites examples as

to how these statements can be used, as well as describing methods of

using available mathematical subroutines. The FORTRAN IV Compiler, a

component of the IBJOB Processor, processes the FORTRAN IV language.

IBM 7090/7094 IBSYS 0peratin_ System: iBJOB Processor

Form C28-6275-4

This two-part publication presents a comprehensive description of the

7090/7094 IBJOB Processor. It also discusses the various components

associated with the IBJOB Processor. Part one contains information

for the applications programmer. Part two is for the systems pro-

grammer. The IBJOB Processor, a group of programs used to translate

programming languages, consists of: The FORTRAN IV (IBFTC) and the

COBOL (IBCBC) compilers; the Loader (IBLDR); the IBJOB Debugging Pro-

cessor (IBLIB); and if applicable, the Subroutine Library (IBLIB)o

The latter is a library of preassembled subroutines that can be used

by the object program.

IBM 70_0/70_4 IBSYS 0peratin5 System:

Processor Debugging Package
Form C28-6362-1

S_ecifications for IBJOB

This publication describes the debugging packages available for COBOL

programs at compilation time and for FORTRAN IV and MAP programs at

load time° The IBJOB Processor Debugging Package is an aid to pro-

grammers in that it obtains dynamic dumps of specified areas during

program execution°

70_0/70_4 PROGRAMMING SYSTEMS: IBJOB Processor_ Overlay Feature of IBLDR

Form C28-6331

This publication provides enough information to the experienced pro-

grammer to enable him to use the Overlay Feature of the Loader, IBLDRo

With the Overlay Feature, it is possible to exceed, the capacity of a

single core storage loado Since IBLDR is a component of the IBJOB

Processor, the reader should have prior knowledge of the IBJOB Processor.

IBM 7090/7094 IBSYS Operating System: Input/0utput Control System

Form C28_6345-2

This publication undertakes to tell programmers of the 7090/7094

7 September 1965 2-66

2.3.5.10

2.3.5.11

2.3.5.12

Input/Output Control System° There is a discussion of basic concepts,

an explanation of the use of IOCS commands and routines, and infor-

mation on the techniques of sequential processing as well as a separate

section covering random processing° IOCS is responsible for making

data readily available for processing by automatically controlling

the transmission of data to and from recording devices. This publi-

cation further expounds upon the three forms of IOCSo The programmer

has access to both the Library IOCS and the full IOCS (7090-I0-919)o

The former, as used with the Macro Assembly Program (MAP), is contained

in the IBJOB Subroutine Library. The latter, as used with the IBM

7090/7094 FORTRAN II Assembly Program (IBSFAP), is an independent sys-

tem. The differences in the two systems are noted° The third form,

FORTRAN IOCS_ is used by FORTRAN IV object programs.

IBM 7090/7094 IBSYS Operatin6 System Utilities

Form C28-6364-3_ with N28-0125-D

This publication undertakes to describe the following seven utility

routines: l) Restore Disk/Drum, 2) Load Disk/Drum, 3) Tape Dump,

4) Format-Track Generation, 5) Home-Address and Record-Address

Generation, 6) Dump Disk/Drum, and 7) Clear Disk/Drum. These utility

routines are available to users of the IBM 7090/7094 IBSYS Operating

System equipped with IBM 729 Magnetic Tape, 1301 Disk Storage, 7320

Drum Storage, or the 7340 Hypertape Units° There is also a descrip-

tion of the Utility Monitor°

IBM7090/7094 Generalized Sortin_ System: 7090/7094 Sort

Form C28-6307

This publication presents a description of the 7090/7094 Generalized

Sorting System as it operates under the System Monitor° It explains

how the sort program sorts fixed-length or variable-length records by

using either the commercial or scientific collating sequences. These

records are written in either signed or unsigned binary or BCD mode.

Part one of this publication discusses the organization and structure

of the sort program° A description of the sorting and merging tech-

niques is provided° Part two describes in detail the program usage.

It covers such areas as tape record format and file structure, control

card formats, general specifications, and user modification procedures.

IBM7090/7094 IBSYS Operatin_ System: System Monitor (IBSYS)
Form C28-6248-2

This publication covers the role of the System Monitor in its overall

control and direction of advanced business and scientific programming

aids of the IBSYS Operating System° With practically no human inter-

vention, the System Monitor is able to process a variety of unrelated

7 September 1965 2-67

2.3.5.13

2.3.5.14

2.3.5.15

Jobs sequentially. Of particular interest to the applications pro-
grammerare the introduction and sections describing the System
Supervisor and the SystemCore-Storage DumpProgram. The systems
programmershould direct his attention to sections dealing with the
SystemNucleus, the SystemEditor, and the Input/Output Executor.

IBM 7090/7094 IBSYS Operatin6 System: Operator's Guide

Form C28-6355

This publication provides enough information to the operator and

machine room personnel to enable them to operate the 7090/7094 IBSYS

Operating System. There are descriptions along with explanations of

System Monitor control cards, system halts, initial start procedures,

and the on-line messages.

IBM 7090/7094 IBSYS Operatin6 System:

Preliminary Specifications

Form C28-6386-3

S_mbolic Update Pro6ram--

This publication describes how the Symbolic Update Program provides

the IBSYS user with the means to modify serialized symbolic tapes, as

well as those tapes for the operating system itself. It defines the

requirements for the Program's implementation and pseudo-instructions.

IBM 7090/7094 FORTRAN IV Lan6ua6e:

List and Format

Form C28-6377

Input/Output without Explicit

This publication provides enough information to the programmer to make

him knowledgeable of the FORTRAN IV language addition scheduled for

implementation in a future version of the FORTRAN IV Compiler. Dis-

cussed is the input/output and conversion system without an explicit

input/output llst and a FORMAT statement.

7 September 1965 2-68

2.3.6.2

2.3.6.3

2.3.6.4

2.3.6.5

INSTALLATIONSUPPLIES

7094 Reference Card

Form X22-6691

All 7094 instructions in both alphabetic and numeric sequence are

_sted in the 7094 Reference Card. The card also provides data channel

commands, and disk storage and Hypertape orders.

COBOL Program Sheet
Form X28-1464

This sheet has provisions for the four divisions of the COBOL program;

namely, Identification, Environment, Data and Procedure. See "COBOL

General Information Manual," Form F28-8053.

COBOL Reference Card

Form X28-1520

This card provides the COBOL programmer with material that he fre-

quently uses. It is a handy reference card showing a COBOL word list

and a basic COBOL format along with tables concerning special charac-

ters used in COBOL; arithmetic and conditional expressions (sequence

of symbols); arithmetic and relational operators; and data-ltems

pictorial characters.

IBM 7040/44-7090/94 Symbolic Lan6uage-Coding Sheet

Form X28-6333

This form is used for coding any of the symbolic languages accepted

by the assembly programs in the 7090/7094 Programming Systems and the

7040/7044 Programming Systems. For ease in both programming and card

punching, columns and lines are ruled and numbered.

FORTRAN Codin6 Form
Form X28-7327

When programming in the FORTRAN language, the FORTRAN Coding Form is

used. For ease of both programming and card punching, columns and
lines are ruled and numbered°

7 September1965 2-69

Table 2-4. 7094 FORTRANDocumentation Form-NumberIndex

FORMNO.

_22-6589

_22-6689
_22-6703
_22-676o

_22-6764

A22 -6784

_22-6785

_20-8090

D28-6235-3

_28-6054

_28-6066-6

_28-6248-2

528-6274-4

D28-6275-4

228-6307

228-6311-3

_28-6331

228 -6345 -2

528-6355

228-6362-1

528-6364-3

TITLE

IBM 729, 7330, and 727 Magnetic Tape Units--

Principles of Operation

7094 Data Processing System Configurator 2.

7094 Data Processing System 2.

7094 Model Ii Data Processing System 2.

(Bulletin)

IBM 7094 Model II Configurator

IBM 1301 and 1302 Disk Storage:

Sequential Data Organization

IBM 1301 and 1302 Disk Storage, Models

i and 2, with 7090, 7094, and 7094

Model II Data Processing Systems

Catalog of Programs for IBM Data Processing

Systems--KWIC Index

IBM 7090/7094 Programming Systems:

FORTRAN II Assembly Program (FAP)

IBM 7090/7094 Programming Systems:

FORTRAN II Programming

IBM 7090/7094 Programming Systems:

FORTRAN II Operations

IBM 7090/7094 IBSYS Operating System:

System Monitor (IBSYS)

IBM 7090/7094 Programming Systems:

FORTRAN IV Language

IBM 7090/7094 IBSYS Operating System:

IBJOB Processor

IBM 7090/7094 Generalized Sorting System:

7090/7094 Sort

IBM 7090/7094 Programming Systems: Macro

Assembly Program (MAP) Language

7090/7094 Programming Systems: IBJOB

Processor_ Overlay Feature of IBLDR

IBM 7090/7094 IBSYS Operating System:

Input/Output Control System

IBM 7090/7094 IBSYS Operating System:

Operator's Guide

IBM 7090/7094 IBSYS Operating System:

Specifications for IBJOB Processor

Debugging Package

IBM 7090/7094 IBSYS Operating System Utilities

PARAGRAPH

2.3.2.3

3.1.1

3.2.1

3.2.2

2.3.2.5

2.3.3.1

2.3.3.2

2.3.5.1

2.3.5.2

2.3.5.12

2.3.5.5

2.3.5.6

2.3.5.11

2.3.3.3

2.3.5.8

2.3.5.9

2.3.5.13

2.3.5.7

2.3°5.1o

PAGE NO.

2-60

2-59
2-6o
2-60

2-59

2-6o

2-61

2-62

2-62

2-64

2-64

2-66

2-65

2-65

2-66

2-62

2-65

2-65

2-67

2-65

2-66

7 September 1965 2-70

Table 2-4. 7094 FORTRAN Documentation Form-Number Index (Cont'd)

FORM NO.

C28-6376

C28-6377

C28-6386-3

P28-8053

F28-8074-3

J28-6260

K22-6691
K28-1464

K28-1520

K28-6333

K28-7327

TITLE

I_M 7090/7094 FORTRAN IV Compiler (IBFTC)

Replacement: Specifications and Language
Additions

IBM 7090/7094 FORTRAN IV Language: Input/

Output without Explicit List and Format

IBM 7090/7094 IBSYS Operating System: Symbolic

Update Program--Preliminary Specifications
COBOL--General Information Manual

FORTRAN

IBM 7090/7094 Programming Systems: IBJOB

Processor Part 5: COBOL Compiler (IBCBC)

PARAGRAPH

2.3.5.3

2.3.5.15

2.3.5.14

2.3.4

2.3.5.4

2.3.4.2

7094 Reference Card

COBOL Program Sheet
COBOL Reference Card

IBM 7040/44-7090/94 Symbolic Language-

Coding Sheet

FORTRAN Coding Form

2.3.6.1

2.3.6.2

2.3.6.3

2.3.6.4

2.3.6.5

PAGE NO.

2-64

2-67

2-67

2-63
2-64

2-63

2-68

2-68

2-68

2-68

2-68

7 September 1965 2-71

2.4

2.4.1

2.4.1.i

2.4.1.2

SYSTEM TAPE CONTENTS

This section describes in brief the characterization of the systems

contained on the combined IBSYS/FMS master tape employed on the 7094

A, B, C and E computers.

FORTRAN MONITOR SYSTEM (FMS)

The FORTRAN Monitor System is a collection of programs that enable

a programmer to compile a FORTRAN II source language program, assemble

a FAP language program, and execute an object program° In addition,

the FMS system contains a library of input/output and exponential

subroutines utilized by the FORTRAN compiler and a library of mathe-

matical subroutines. The processor provides the capability of com-

bining programs written in FORTRAN II and FAP languages with previously

assembled program segments to form a single executable object program.

Facilities are available for changing core storage loads so that exe-

cuted portions of a program can be overlaid with program portions yet

to be executed° Each of the subprograms of the system are briefly

described in 2.4.1ol, 2.4.1o2, and 2.4ol.3.

FORTRAN II Compiler

The FORTRAN II Compiler translates programs written in the FORTRAN II

language and produces input to the assembler. The assembler processes

the input, and the resulting binary object program may be loaded for

execution° The object program, which is a result of compiling, assem-

bling, and loading, consists of the generated instructions and the

subroutines from the subroutine library.

Additional information on the FORTRAN II language and operation is

contained in the following publications: IBM FORTRAN II General

Information Manual, Form C28-8074 and IBM 7090/7094 Prosrammin6

Systems: FORTRAN iI Operations, Form C28-6066.

FORTRAN II Assembly Pro6ram (FAP)

The FORTRAN Assembly Program processes FAP language programs and pro-

duces binary formalized object programs. The assembled object program

may then be loaded for execution. A detailed description of the

assembler is contained in the IBM 7090/7094 Pro$rammin$ Systems:

FORTRAN II Operations, Form C28-6060_ FORTRAN II Assembly Pro6rams,

Form C28-6235; and in the 7094 Data Processin$ System-Principles of

Operation, Form A22-6703.

7 September 1965 °-72

2.4.1.3

2.4.1.4

Binary S_mbolic Subroutine Loader (BSS)

The Binary Symbolic Subroutine Loader is punched out by FORTRAN as

the first nine cards of each main program. Additionally, a program

card is punched out for each main program deck and for each subpro-

gram deck. The program card specifies the number of locations to be

occupied by the routine; this number is used as an increment for

relocating an immediately subsequent routine. The loader uses the

information contained on the program cards to allocate core storage

for the main program routine and any associated subprogram routine.

Additional information on the BSS loader is contained in the IBM 7090/

7094 Pro_rammin_ System: FORTRAN II Operations, Form C28-6060.

FORTRAN II Library

The FORTRAN II library is a collection of subroutines in relocatable

binary form. It consists of the input/output and exponential sub-

routines utilized by the FORTRAN compiler and the FORTRAN library

mathematical subroutines. The entry point names, card labels, and

descriptions of the subroutines contained in the library follows.

(i) Special DSD Library Subroutines: A brief description of addi-

tional routines which are unique to the DSD system library is as

follows:

a. Mathematical

N ame

ASIND

ACOSD

ATANGD

Source

Y = ASIN(A)

Y --Acos(A)

Y = ATANGD(A,B)

Description

Computes the principal value of the

arc sine in degrees. Output is a

normalized floating-point number in

the AC.

Computes the principal value of the

arc cosine in degrees. Output is

a normalized floating-point number

in the AC.

Computes the properly quadranted arc

tangent in degrees of the quotient of

the two signal inputs. Output is a

!normalized floating-point number in

the AC.

[

7 September1965 2- 73

(1) Special DSD Librar_ Subroutines (Cont'd)

a. Mathematical (Cont'd)

Ns_ne

ACOSR

ASINR

ATANGR

SIND

COSD

Source

Y = ACOSR(A)

Y = ASINR(A)

Y = ATANGR(A,B)

Y = SIND(A)

Y = COSD(A)

Description

Computes the arc cosine in radians.

Output is a normalized floating-

point number in the AC.

Computes the arc sine in radians.

Output is a normalized floating-

point number in the AC.

Computes the arc tangent in radians.

Output is a normalized floating-

point number in the AC.

Computes the sine of an angle A ex-

pressed in degrees. Output is a

normalized floating-point number in

the AC.

Computes the cosine of an angle A

expressed in degrees. Output is a

normalized floating-point number
in the AC.

b. UMPLOT

Name Source Description

UMPLOT See Paragraph

2.5.1.i
Rapid plotting of numerical infor-

mation for use with FORTRAN calling

programs. The resulting graph is

copied onto any decimal output tape

for off-line printing. (See Paragraph

2.5olol for complete description.)

7 September 1965 2-74

(i) Special DSD Library Subroutines (Cont'd)

c. CalComp 570 Plotter Routines

Name

CCPLOT

CPLOTS

SYMBOL

Source

CALL CCPLOT

(X, Y, IC)

CALL CPLOTS

(BUFFER, IDT,

INDIC8)

CALL SYMBOL

(X, Y, HEIGHT,

BCD, THETA, N)

Description

CCPLOT is analogous to the current

PLOT routine. It is used to perform

pen movements on the CalComp 570

Plotter. (See Paragraph 2.5.1.4 for

detailed instructions in its use.)

CPLOTS is analogous to the current

PLOTS routine. It is used to set up

a tape buffering area. (See Paragraph

2.5.1.5 for detailed instructions in

its use.)

SYMBOL is analogous to the current

SYMBL4 routine. It is used to gen-

erate symbols and alphameric char-

acters for the Cal Comp 570 plotter.

(See Paragraph 2.5.1o6 for detailed

instruction in its use.)

_. Utility Routines

Source DescriptionName

CLOCKS CALL MIN 0N(I)

CALL OFF MIN

CALL MINITS(M)

CALLMSEC ON(X)
CALL OFF MS

CALL MSECS(X)

This is a subroutine to operate the

millisecond and/or minute trap sub-

channels on the DCC on channel F.

For each clock, there are entry points

to turn the clock on, turn it off, and

to read out the current value of

elapsed time. (See DSD Memorandum

dated Ii/14/63 by R. Danek for addi-

tional information.)

7 September1965 2-75

(i) Special DSD Library Subroutines (Cont'd)

I. Utility Routines (Cont'd)

Name

DUMP

Source

CALL DUMP

(A,B,C)
CALL PDUMP

(A,B,C)

Description

Dumps core according to the specifi-

cation in the arguments A, B and C.

DUMP initiates next job while PDUMP

returns control to calling program.

(See Paragraph 2o5ol.2 for description

of modified 65K dump routine.)

(2) Mathematical Library Subroutines:

_. Single-Precision Subroutines

Name

EXP(1

EXP(2

 P(3

EXP

Source
r

I**J

A**J

A**B

Y = EXPF(A)

Description

Exponential expression--given a fixed-

point base and a fixed-point expo-

nent. Output is a fixed-point number

in the AC.

Exponential expression--given a

floating-polnt base and a fixed-point

exponent. Output is a normalized

floating-point number in the AC.

Exponential expression--given a

floating-point base and a floating-

point exponent. Output is a normal-

ized floating-point number in the AC.

Computes eA, the natural antiloga-

rithm of the number Ao Output is a

normalized floating-point number
in the AC.

7 September 1965 2-76

(2) Mathematical Library Subroutines (Cont'd)

_. Single-Precision Subroutines (Cont'd)

Name

SQRT

SIN,COS

ATAN

LOG,
LOGIO

TANH

Source

Y = SQRTF (A)

Y = ATANF(A)

Y = LOGF(A)

Y = LOGIOF(A)

Y = TANHF(A)

Description

Computes the positive square root for

a single-precision, real number A.

Output is a normalized floating-point

number in the A.C.

Computes the sine or cosine of an

angle A expressed in radians. Output

is a normalized floating-point number

in the AC.

Computes the arctangent in radians of

the argument A. Output is a normal-

ized floating-point number in the AC.

Computes the natural logarithm or

the common logarithm of the number

A. Output is a normalized floating-

point number in the AC.

Computes the hyperbolic tangent of

the argument A. Output is a normal-

ized floatlng-point number in the AC.

b. Double-Precision Subroutine

Double-Precision arithmetic is a technique for carrying out

floating-point calculations with twice the normal number of

significant decimal places. 0nly single-precision floating-

point numbers may be input/output; output data may be more

accurate as a result of using double-preclsion operations

internally. The standard FORTRAN II library has been modi-

fied by the addition of double-preclsion subroutines that

utilize the 7094 double-precision hardware. These routines

may be employed by placing an E in column 1 as described

herein. When the E double-precislon routines are specified,

the I/O subroutines (ESL1) and (ESLO) provide control for

7 September 1965 2-77

(2) Mathematical Library Subroutines (Cont'd)

b,

J

Double-Precision Subroutine (Cont'd)

the input and output of lists containing nonsubscripted array

names. For additional information, see the Programming Methods

Section Memorandum dated 5/18/65.

Ns_ne

DMOD

EMOD

DINT

DEXP (2

EEXP(2

DLOG

DLOGIO

ELOG

EiOGIO

DSIN

DCOS

ESIN

ECOS

DATAN

DATAN2

EATAN

EATAN2

DFAD

DFSB

DFMP

DFDP

DEXP(3
E (3

Source

D Y = MODF(D,E)

E Y = MODF(D,F)

D Y --INTF(D)

D Y = D**E

E Y = D**E

D Y = LOGF(D)

D Y = LOGIOF(D)

E Y = LOGF(D)

E Y = LOGIOF(D)

D Y = SINF(D)

D Y = COSF(D)

E Y = SINF(D)

E Y = COSF(D)

D Y = ATANF(D)

D Y = ATAN2F(D,E)

E Y = ATANF(D)

E Y = ATAN2F(D,E)

DA=B+C

DA=B-C

DA=B*C

DA=B/C

D Y = D**E

E Y = D**E

Description

Computes D modulo E (defined as D

(D/E) * E) where only the integer

portion of (D/E) is used in evolving

the equation.

Obtains the integer part of a double-

precision number.

Exponential expression for double-

precision.

Computes the natural logarithm or the

common logarithm of the argument D.

Computes the sine or cosine of an

angle expressed in radians.

Computes the arctangent, in radians

of one or two arguments.

Performs the basic double-precision

arithmetic operations (addition,

subtraction, multiplication, and

division).

One of two routines is compiled depend-

ing on whether a floating-point base,

fixed-point exponent, or a floating-

point exponent is specified.

7 September 1965 2-78

(2) Mathematical Library Subroutines (Cont'd)

b. Double-Precision Subroutine (Cont'd)

Name

ETANH

DSQRT

ESQRT

DEXP

EEXP

RMAXI

EMINI

ESIGN

Source

E Y = TANHF(D)

D Y = SQRTF(D)

E Y = SQRTF(D)

D Y = D**E

E Y = D**E

E Y = MAXIF

(A,B,Co..)

E Y = MINIF

(A,B,C...)

E Y = SIGNF(A,B)

Description

Computes in double-precision floating-

point the hyperbolic arctangent of

the argument D.

Computes in double-precision floating-

point the positive square root of the
value D.

Exponential subroutine for double-

precision numbers.

Selects the largest of the specified

arguments.

Selects the_nallest of the specified

arguments.

Changes the sign of the second argu-

ment B to the sign of the first

argument Ao

z. Complex Arithmetic

Complex Arithmetic is a technique for carrying out floating-

point calculations with the real and imaginary parts of complex

numbers. No provision is made for the input/output of complex

numbers; however, since each part is requested internally as a

separate single-precision floating-point number, each part may

be input/output separately.

Name Source Description

IABS I A = ABSF(C) Computes the absolute value of the

argument C, where C2 = X2 + y2 for

the complex number X + iY.

7 September 1965 2-79

(2) Mathematical Library Subroutines (Cont'd)

c. Complex Arithmetic (Cont'd)

Nsmqe

IEXP

ILOG

ISQET

ISIN

ICOS

IFMP

IFDP

IEXP (2

Source

I A = EXPF(C)

I A = LOGF(C)

I A = SQRTF(C)

I A = S F(C)
I A = COSF(C)

I C =A*B

I C = A/B

I Y = D**E

Description

Computes the natural antilogarithm of

the argument C; if C = X + iY then

IEXP computes e c

Computes the natural logarithm of the

argument C; if C = X + iY then ILOG

computes logeC.

Computes the principal square root

of the argument C_ if C = X + iY then

ISQRT computes C 1/2.

Computes the sine or cosine of the

argument C.

Performs complex multiplication and

complex division, respectively.

Exponential expression for complex

numbers.

(3) FORTPJ%N II i/0: The FORTRAN input/output library contains the

necessary routines to insure the correct operation of source lan-

guage I/O statements. A brief characterization of each routine on

the DSD library is given below.

N_e

(sTm),(s m)

(SCH)

(SPH)

Card

Label

9STH

9SCH

9SPH

Description

Writes BCD tape record(s) from

storage.

Punches alphameric card(s) from

storage.

Prints information from storage

on the on-line printer.

7 September 1965 2-80

(3) FORTRAN II I/O (Cont'd)

Ns_ne

(BST)

(EFT)

(RWT)

(SLI)

(SLO)

Card

Labe I

9BST

9EFT

9RWT

9SLI

9SIn

(R_), (P_C)

(WSR),(w_)

(IOS),(EXB),
(BUF),(SET)

(s_), (DRS)

(10U)

(IOH), (FIL), (RTN)

(IOS),(RDS),(WRS),
(BSR),(WEF),(REW),
(ETT),(RCH),(TEF),
(TOO),(TRC)

(TSB), (RLR)

9RER

9WER

9IOB

9DP_

9IOU

9IOH

9IOS

9TSB

Description

Backspaces the designated tape

one record.

Writes an EOF mark on the desig-

nated tape.

Rewinds the designated tape.

Controls input of lists contain-

ing nonsubscripted array names.

Controls output of lists contain-

ing nonsubscripted array names.

Error routines for tape reading.

Error routines for tape writing.

Controls I/O of binary data.

Writes or reads data on the

designated drum. (SRD) is for

writing and (DRS) is for reading.

DSU channel-unit table. Local

modifications have been made to

rearrange logical unit definitions

Controls input/output and con-

version of alphameric data.

Supervisory control of channel-

unit designation during input/

output.

Reads binary tape record(s) into

storage.

7 September1965 2-81

(3) FORTRAN II I/O (Cont'd)

Name

(win)

(CSH)

(TSH),

Card

Label

9STB

9CSH

9TSH

Description

Writes binary tape record(s) from

storage.

Reads alphameric card(s) into

storage and converts their con-

tents to BCDo

Reads BCD tape record(s) into

storage.

(4) FORTRAN II Utility Subroutines:

Card

Name Label

XLOC 9XL0

(_X_) 9EX_

EXIT 9XIT

(_M) 9_

(TES)

CHAIN 9CHN

Description

The source statement, L = XLOCF(N), returns

the relocated location of its argument

(variable N) to the accumulator as a FORTRAN

fixed-point constant.

Controls the object program error procedure

when execution is not under Monitor control.

Modified so traps are disabled.

Positions the system tape at the sign-out

record and restores I-CS to begin the next

job. Routine is modified to permit call-out

of multiple tag mode and traps disabled.

Controls the object program error procedure
when execution is under Monitor control.

Routine is modified to permit call-out of

multiple tag mode and traps disabled.

The instruction XEC * $ (TES) may be used in

a FAP-coded subroutine to make sure that the

execution of any previous FORTRAN WRITE

statement is complete and checked.

Locates chain links, loads the chain executive

loader into lower storage, and transfers con-

trol to it.

7 September 1965 2-82

2.4.2

2.4.2.1

sYs MonITOR(IBSYS)

'Fne System Monitor provides the execution, control, and coordination

that enables a series of unrelated jobs to be processed with little

or no operator intervention. Operating under the control of the Sys-

tem Monitor are several subsystems that provide the programmer with

a variety of programming tools. The capabilities of these subsystems

may be used singly or in combination to process a particular Job.

The System Monitor consists of the:

System Supervisor--This controls and coordinates the

processing of jobs.

System Nucleus--This provides facilities for inter-

communications among the subsystems.

Input/Output Executor--This coordinates and controls

input/output.

Core-Storage Dump Program--This facilitates testing

and analysis of programs.

System Editor--This is used in modifying and main-

taining the System Monitor and subsystems.

IBJOB Processor

The IBJOB Processor consists of a group of programs used to translate

programming languages and to permit the loading and execution of the

compiled and assembled programs. Contained within the IBJOB Processor

are the following programs:

Processor Monitor (IBJOB)

FORTRAN IV Compiler (IBFTC)

COBOL Compiler (IBCBC)

Macro Assembly Program (IBMAP)

Relocating Loader (IBLDR)

Subroutine Library (IBLIB)

Dubugging Package (IBDBL & IBDBC)

7 September1965 2-83
0

The Processor Monitor reads control cards that specify the action

to be performed. The action can consist of one or more compilations,

assemblies, or the loading of relocatable programs that were assem-

bled previously. In this way, the monitor controls the interaction

among the several IBJOB Processor components. These include:

(i) The FORTRAN IV Compiler (IBFTC): The IBFTC compiler translates

programs written in the FORTRAN IV source language and produces in-

put to the assembler. The assembler and, if required, the Loader

process the input. The processing and loading to be performed by the

Loader is specified on the $IBJOB control card via the functions

called GO, LOGIC, DLOGIC, or MAP (see Section 2.2). The object pro-

gram is composed of generated instructions and subroutines from the

subroutine Library as a result of compiling, assembling, and loading.

The Processor Monitor calls the FORTRAN IV compiler into core storage

when it reads an $IBFTC control card (see Section 2.2).

(2) The Macro Assembly Pro6ram (IBMAP): The Macro Assembly Program

processes two types of programs: Those written in the MAP language

and those generated MAP programs that are output from FORTRAN IV and

COBOL compiler. There may be two types of outputs from the assembler:

relocatable or absolute binary. The output from the assembling and

loading functions is an object program composed of machine instruc-

tions generated by the assembler and coinciding with the MAP mne-

monics. In addition the object program may contain input/output

routines that are part of the subroutine Library and possibly FORTRAN

IV mathematical subroutines from the subroutine Library. The assem-

bler is called into operation when the Processor Monitor reads an

$1BMAP control card (see Section 2.2).

(3) The Subroutine Library (IBLIB): The subroutine Library consists

of a number of relocatable subroutines for system and programmer use.

It is composed of system subroutines and FORTRAN IV subroutines.

(COBOL subroutines have been removed from Data Systems Division

systems.) The FORTRAN section is divided into three groups: mathe-

matics, input/output, and utility. These subroutines are made avail-

able to the programmer via the Loader, which incorporates them, as

required, into the object program at load time.

7 September 1965 2-84

_. Special Library Subroutines

A brief description of additional Library subroutines which are

unique to the Data Systems Division system Library is as follows:

a. Mathematical

Name

ASIND

ACOSD

ATANGD

ACOSR

ASINR

ATANGR

SIND

COSD

Source

Y = ASIN(A)

Y = ACOS(A)

Y = ATANGD(A,B)

Y = ACOSR(A)

Y = ASINR(A)

Y = ATANGR(A,B)

Y = SIND(A)

Y = COSD(A)

Description

Computes the principal value of the

arc sine in degrees. Output is a

normalized floating-point number

in the AC.

Computes the principal value of the

arc cosine in degrees. Output is

a normalized floating-polnt number

in the AC.

Computes the properly quandranted

arctangent in degrees of the quo-

tient of the two signal inputs.

Output is a normalized floating-

point number in the AC.

Computes the arc cosine in radians.

Output is a normalized floating-

point number in the AC.

Computes the arc sine in radians.

Output is a normalized floating-

point number in the AC.

Computes the arctangent in radians

Output is a normalized floating-

point number in the AC.

Computes the sine of an angle A

expressed in degrees. Output is a

normalized floating-polnt number

in the AC.

Computes the cosine of an angle A

expressed in degrees. Output is a

normalized floating-point number il

the AC.

7 September1965 2-85

_. Special Library Subroutines (Cont'd)

b. UMPLOT

Ns_ne

UMPLOT

Source

See Section 2.5

Description

Rapid plotting of numerical infor-

mation for use with FORTRAN calling

programs. The resulting graph is

copied onto any decimal output tape

for off-line printing. (See Sectior

2.5 for complete description.)

_°

Name

FDMP

Utility Routines

Map Call

CALL DUMP(A,B,I)

CALL PDUMP(A,B,I)

CALL FPDUMP(A,B,I)

Description

Modified 65K Core Dump Routine.

(See Section 2.2 for additional

information.)

2. Mathematical Library Subroutines
D

a. Single-Precision Subroutines

Source Map Call DescriptionName

FXPI

FXP2

I**J

A**J

CALLo i.(I,J)

CALL oXP2. (A,J)

Exponential expression--given

a fixed-point base and a

fixed-point exponent. Out-

put is a fixed-point number

in AC.

Exponential expression--given

a floating-point base and a

fixed-point exponent. Out-

put is a normalized floating-

point number in AC.

7 September 1965 2-86

_. Mathematical Library Subroutines (Cont'd)

Name Source

Single-Precision Subroutines (Cont'd)

FXPF Y = EXP(A)

FLOG Y = ALOG(A)

Y = ALOG10(A)

FATN Y = ATAN(A)

Y = ATAN2(A)

FSCN Y = SIN(A)
Y --COS(A)

FTNH Y = TANH(A)

FSQR Y = SQRT(A)

Map Call

CALLEXP(A)

CALL ALOG (A)

CALL AI_GI0(A)

CALL ATAN(A)

CALL ATAN2 (A)

CALL S IN (A)

CALL COS (A)

CALL TANH (A)

CALL SQRT(A)

Description

Computes eA, the natural

antilogarithm of the

number A. Output is a

normalized floating-

point number in AC.

Computes the natural

logarithm or the common

logarithm of the number

A. Output is a normal-

ized floating-point

number in AC.

Computes the arctangent,

in radians, of the argu-

ments A or A/B, respec-

tively. Output is a

normalized floating-

point number in AC.

Computes the sine or

cosine of an angle A

expressed in radians.

Output is a normalized

floating-point number

in AC.

Computes the hyperbolic

tangent of the argument

A. Output is a normal-

ized floating-point

number in AC.

Computes the positive

square root of the num-

ber A. Output is a

normalized floating-

point number in AC.

7 September1965 2-87

2. Mathematical Library Subroutines (Cont'd)
m

b. Double-Precision Subroutines

Name Source

FDMD Y = DMOD(D,E)

FDX1 l) D**I

2) C**I

FDX2 i) D**A

2) D**E

Map Call

CALL DMOD(D,E)

CA L.DxP1.(D,I)
CA L.CXP1.(C,I)

CALL .DXP2. (D,A)

CALL oDXP2. (D,E)

Description

Computes D modulo E
(defined as D-(D/E)*E,

where only the interger

portion of (D/E)is used

in evaluating the

equation). Output is a

normalized double-

precision floating-

point number in the

AC and MQ.

i) Exponential expres-

sion--given a double-

precision floating-

point base and a fixed-

point exponent. Out-

put is a normalized

double-precision

floating-point number

in the AC and MQ.

2) Exponential expres-

sion--given a complex

base and a fixed-point

exponent. Output is a

complex number with the

real portion in the AC

and the imaginary

portion in the MQ.

i) Exponential expres-

sion--given a double-

precision floating-

point base and a

single-precision

floating-point expo-

nent. Output is a

double-precision nor-

malized floating-point

number in the AC and

MQo

7 September 1965 2-88

2. Mathematical Library Subroutines (Cont'd)

Double-Precision Subroutines (Cont'd)

NsIne

FDXP

FDLG

FDSQ

FDSC

Source

Y --DE (O)

Y = DLOG(D)

Y = DLOGIO(D)

Y = DSRQT(D)

Y = DSIN(D)

Map Call

CALL DEXP (D)

CALL DLOG(D)

CALL DLOGIO(D)

CALL DSRQT(D)

CALL DS IN (D)

Description

2) Exponential expression--

given a double-precision

floating-point base and a

double-precision floating-

point exponent. Output is

a normalized double-precision

floating-point number in the

AC and MQ.

Computes the natural anti-

logarithm of the double-

precision number D. Output

is a normalized double-

precision floating-point
number in the AC and MQ.

Computes the natural loga-

rithm or common logarithm of

the double-precision argument

D. Output is a normalized

double-precision floating-

point number in the AC and

MQ.

Computes the positive square

root of the double-precision

argument D. Output is a

normalized double-precision

floating-point number in

the AC and MQ.

Computes the sine or cosine

of an angle expressed in

radians. Output is a nor-

malized double-preclslon

floating-point number in

the AC and MQ.

7 September1965 2-89

2. Mathematical Library Subroutines (Cont'd)

b. Double-Precision Subroutines (Cont'd)

Name Source

FDAT Y = DATAN(D)

Y = DATAN2(D,E)

Map Call

CALL DATAN(D)

CALL DATAN2 (D_ E)

Description

Computes the arctangent in

radians, of one or two

double-precision argu-

ments. Output is a nor-

malized double-precision

floating-point number in

the AC and MQ.

c. Complex Subroutines

Source Map Call DescriptionName

FCAS C*F

C/F

FCAB Y --CABS(C)

FCXP Y = CEXP(C)

Y = c G(c)

CALL .CFMP. (C,F)

CALL .CFDPo (C,F)

CALL CABS (C)

CALL CEXP(C)

CALL CLOG(C)

Performs complex multiplica-

tion and complex division,

respectively. Output is a

complex number in the AC and

MQo

Computes the absolute value of

the argument C. Output is a

complex number in the AC and

MQo

Computes the natural anti-

logarithm of the argument C.

Output is a complex number in

the AC and MQ.

Computes the natural loga-

rithm of the argument C.

Output is a complex number in

the AC and MQ.

7 September1965 2-90

_. Mathematical Library Subroutines (Cont'd)

=. Complex Subroutines (Cont'd)

Name Source

FCSQ Y = FCSQ(C)

;CSC Y --CSIN(C)
Y --CCOS(C)

Map Call

CALLCSQRT(C)

CAU,CSI_(C)
CALLCCOS(C)

Description

Computes the principal square

root of the argument C. Out-

put is a complex number in

the AC and MQ.

Computes the sine or cosine

of the argument C. Output is

a complex number in the AC

and MQ.

_. Machine Test Indicator Subroutines

These routines are used to test indicators by CALL statements in the

FORTRAN language.

Name

FSLITE

FSSWTH

FOVERF

Map Call

l) CALL SLI_(I)
2) CALL SLITE(I,J)

CALL SSWTCH(I,J)

CALLoV_FL(j)

Description

i) For I = 0 all sense lites are set

off. If I = 1, 2, 3, 4 the correspond-

ing sense lite is set on.

2) The sense lite I = l, 2, 3, 4 is

tested and set OFF. For sense lite

ON the variable J is set to l, for OFF

conditions J is set to 2.

The sense switch I = i, 2, 3, 4, 5, 6

is tested and if switch is DOWN the

variable J is set to i. For switch UP_

J is set to 2.

A test is performed on overflow con-

dition. When overflow exists the

variable J is set to i; no overflow

results in J set to 2. Machine is

left in non-overflow condition after

execution.

7 September1965 2-91

_. Machine Test Indicator Subroutines (Cont'd)

Name

FDVCHK

Map Call

c T,breaK(J)

Description

The variable J is set to 1 when Divide

Check Indicator is ON and J is set to

2 when DCI is OFF° The DCI is set OFF

after test.

4_. FORTRAN IV I/0

The FORTRAN input/output library contains the necessary routines to

insure the correct operation of source language I/O Statements. A

brief characterization of each routine on the DSD Library is given

below.

Name

FOUT

FRWT

FSLDI

FSLBI

FSLI

FSLDO

FSLBO

FSLO

FVIO

FRCD

Description

Writes blocked records on the system output unit.

Rewinds designated unit°

Controls processing of lists containing nonsubscripted

BCD array names for input.

Controls processing of lists containing nonsubscripted

binary array names for input.

Sets up indexing for input of nonsubscripted arrays.

Controls processing of lists containing nonsubscripted

BCD array names for input.

Controls processing of lists containing nonsubscripted

array names for output.

Sets up indexing for output of nonsubscripted arrays.

Establishes identification between a variable logical

unit and the corresponding FORTRAN file.

Controls reading of cards on-line and conversion of

alphameric card code to BCD.

7 September 1965 2-92

_, FORTRAN IV I/O (Cont'd)

Name

FEFT

FBST

UNITXX

FWRD

FWRB

FRDD

FRDB

FPRN

FPUN

FCNV

FIOB

FIOS

FIOH

FSEL

FWRO

FWRU

FRDU

FIOU

Description

Writes a file mark on the designated unit.

Backspaces the designated unit one record.

I/O routines used by loader for the initialization of

IOCS files used by the object program.

Controls BCD write operation.

Controls binary write operation.

Controls BCD read operation.

Controls binary read operation.

Controls print operation (on-line).

Controls punch operation (off-line).

Effects the necessary conversion for input or output

list items.

Processes list items for binary transmission.

Initializes all I/O library IOCS calling sequences for

binary and BCD transmission.

Scans FORMAT Statements and links to the object program

to begin conversion of data.

Performs all IOCS selects.

Controls processing of list of variables and arrays

associated with BCD output.

Controls writing of BCD records.

Controls reading of BCD records.

Controls processing of lists of variables and arrays

associated with a NAMELIST name for BCD input.

7 September1965 2-93

_. System Subroutines

Given below is a brief characterization of the system subroutines

contained on the DSD Library. The marked routines (*) are called

automatically for eadq. object program

Name Description

.IBSYS

.IOEX

oJBCON

.LXCON

.RAND

.FPTRP

.IODEF

olOCSF

olOCS

,IOCSM

oI0CSB

°IOCSL

Defines the indexes of the system units.*

Defines the location of the I/0 Executor entry points.*

Relocates Processor Monitor communication words to an

area immediately above IOEX during object program

execution.*

Normally entered at termination of object program

execution; however, it is also entered at a system

stop or on a STR instruction. Object program files

are closed and all I/O activity is stopped.*

k

Provides for processing of random records on 1301

disk storage.

Floating-point trap subroutine; determines the cause

of trap and write message on system output unit indi-

cating cause of trap and the octal location at which

it occurred.

Contains primary I/0 system communication region.

General entry and exit routines used by IOCS are

contained in this subroutine.

Initializes the communication region required by FORTRAN

IOCS and contains text for the special IOCS°

Contains the text for all levels of relocatable IOCSo

Initializes the communication region required by

MINIMUM IOCSo

Initializes the communication region required by

BASIC IOCSo

Initializes the communication region required by LABEL

IOCS--modified to delete switch tests.

7 September 1965 2-94

_. System Subroutines (Cont'd)

Name Description

.LOVRY

•LXSL

•IBDBI

oDSTRN

.DSTR0

Loads overlay links--required for all object programs

using overlay feature.

Read/write select routine.

Required for DEBUG requests. Interprets the request

and executes the operation•

Required for all nonoverlay DEBUG requests--searches

a table for DEBUG request points.

Used for overlay DEBUG requests--searches table for

request points.

6. FORTRAN Utility Subroutines

Name

.ERAS

FPARST

FXEM

XIT

Descri tlon_

Erasable words used by object program.

Used by program SIFT to determine, for FORTRAN IV pro-

grams, address of desired part of double-precision or

complex pair, as specified in FORTRAN II program.

Controls object program error procedure--modified for

diagnostics to logical 3 and to delete messages.

Returns control to subroutine .LXCONo

(4) The Loader (IBLDR): The Loader processes relocatable binary

program decks generated by the assembler and combines any re-

quired subroutines from the subroutine Library to form one

executable object program. It assigns absolute core storage

locations to the relocatable binary text of the program and

resolves cross-references. Additionally, it allocates core

storage for pools of input/output buffers and attaches files

to the buffer pools. The Loader performs these functions

automatically; however, a programmer can modify the procedure

by using control cards.

7 September1965 2-95

2.4.2.2

2.4-,2. 3

2.4.2._

2.4.2.5

The COBOL Compiler (IBCBC): THE IBCBC compiler translates

programs written in COBOL language and produces input to the

assembler. The assembler and, if required, the Loader process

the input. The processing and loading to be performed by the

Loader is specified on the $IBJOB control card viathe function

calls GO, _DGIC, DLOGIC, or MAP (see Paragraph 2.2.1.2(4)).

The object program is composed of generated instructions and

subroutines from the subroutine Library as a result of com-

piling, assembling, and loading. The Processor Monitor calls

the COBOL compiler into core storage when it reads an $IBFTC

control card (see Paragraph 2.2.1.2(5)).

The Commercial Translator Processor (CT)

This is available for compiling, assembling, loading, and executing

programs written in the IBM Commercial Translator Language. A com-

plete description of the CT is contained in the publication, IBM

709/7090 Commercial Translator Processor, Form J28-6169.

The 90PAC Processor (90PAC)

This is used to establish and maintain data files and to generate

reports on the data in the files. Additional information on the

90PAC Processor is available in the following IBM publications:

7090 Pro6rammin6 System, Share 7090 90 PAC

Part i of Introduction and General Principles, Form J28-616b

Part 2 of The File Processor, Form j28-6167

Part 3 of The Report Generator, Form J28-6168

The Input/Output Control System (IOCS)

This is used by programs assembled by the FORTRAN II Processor.

IOCS automatically controls the blocking and unblocking of data

records; the overlapping of processing with input and output; and

the preparation and checking of labels. The required portions of

IOCS are loaded with the assembled object program, and this relieves

the programmer of the task of writing complex i/O routines. The

publication, IBM 7090/7094 IBSYS Operating System: Input/Output

Control System, Form C28-6345, provides a detailed description of
IOCSo

The IBSFAP

This mode of the FORTRAN processor can be used to assemble programs

written in the FAP language. However, it may not be used to load

and execute the assembled program. The system programmer has used

7 September 1965 2-96

2.4.2.6

2.4.2.7

2.4.2.8

IBSFAP primarily for updating symbolic tapes by changing, deleting,

or adding instructions. An IBSFAP assembled program can be loaded

and executed under control of the IOCS system or the FORTRAN mode of

the FORTRAN II Processor. Additional information on IBSFAP is avail-

able in the publication, IBM 7090/7094 Programming Systems: FORTRAN

II Assembly Program (FAP), Form C28-6235.

The FORTRAN II Processor (Version III)

This operates under control of IBSYS and can be used to compile, assem-

ble, load, and execute programs written in FORTRAN II language. This

version of FORTRAN is available on the system tape; however, it is not

currently maintained. Those programmers requiring the use of this

version of FORTRAN II should contact the Programming Methods Section

for additional information.

The Utilities ,(DK9OUT)

These utilities, available under the control of IBSYS monitor, consist

of l) a tape dump routine for 729 Magnetic Tape Units and 7340 Hyper-

tape Drives and 2) several 1301 Disk Storage and 7320 Drum Storage

routines. These routines consist of format track generation, home

address and record address identification, load disk/drum, dump disk/

drum, restore disk/drum, and clear disk/drum. A complete description

of these routines and their use is contained in the publication, YBM

7090/7094 IBSYS Operatin_ System Utilities, Form C28-6364.

The RESTART Program

This is used exclusively by the operator of the system. It is designed

to enable the operator to restart an interrupted program using a check-

point record recorded by IOCS before the interruption occured. A de-

scription of RESTART is contained in the publication, IBM 7090/7094

IBSYS Operating System: Operator's Guide, Form C28-6355.

7 September 1965 2-97

2.5 UTILITY ROUTINES

This section describes those utility routines that have been prepared

for use by Goddard Space Flight Center programmers. These routines

are contained onC1 utility tape, in binary decks, and on system

library.

FORTRAN II

UMPLOT Plotting Subroutine

(i) Purpose: The purpose of this subroutine is for rapid plotting

of numeric information for use with FORTRAN Calling programs. The

resulting graph is copied onto any decimal output tape for off-line

printing.

(2) Method: The philosophy used in writing this subroutine was to

treat a region of core storage (called the image) much as a piece of

graph paper when plotting data manually.

First the image region is blanked out and a grid formed of I's and

-'s (with + at the intersections) is placed in the image. Given the

maximum and minimum values of the two variables, say X and Y, the

routine can place any specified BCD character at the appropriate

position in the image for a given pair of values (Xi, Yi)"

Each point (Xi, Yi) is plotted individually and independently. A

character falling on a grid line replaces the grid character in that

position. A character falling on a previously plotted character will

replace that character. Points falling outside the grid limits will

be ignored. When all desired points have been plotted, the image is

copied onto the specified decimal output tape for off-line printing.

(3) Use: The subroutine has four main entries which perform the

following functions:

PLOT i sets up the grid spacing and the total width and

length of the graph image. It determines the location

of the decimal points and the multiplying factors (powers

of lO) for values of the ordinate and the abscissa to be

printed at the grid lines.

PLOT 2 prepares the grid, examines the maximum and mini-

mum values of the coordinates, and establishes internally

a formula for computing the location in the image corre-

sponding to the point (Xi, Yi)"

7 September1965 _-9c

PLOT3 places a specified BCDcharacter in the
appropriate position(s) corresponding to the
given (Xi, Yi)"

FPLOT4 writes the image of the completed graph
on the output tape for off-line printing. A
label for the ordinate is printed vertically at
the left edge of the page. Values of the abscissa
and ordinate are printed at the grid lines outside
the bottom and left edges of the graph.

(4) Calling Sequence: The calling sequences are as follows:

CALL PLOTI (NSCALE,NHL,NSBH,NSBV)

CALL PLOT2 (IMAGE, XMAX,XMIN,YMAX_YMIN)

CALL PLOT3 (BCD, X,Y,NDATA)

CALL FPLOT4 (NCHAR,NHABCDEF o..)

1. Description of Arguments--The following is a description of

the arguments:

a. NSCALE This is an array in the users program having one

or five locations. If the user wishes to use the standard

scale factors and decimal point positions, NSCALE should

equal zero. To alter the standard scale factors, NSCALE

must have five locations containing:

Location Contents Function

NSCALE(1) any nonzero value to alter standard factors

NSCAU (2) I printed values of the ordinate

(Y) are i01 times the actual

value.

NSCALE(3) J printed values of the ordinate

(Y) have J digits following the

decimal point (J _ 8)

NSCALE(4) K printed values of the abscissa

(X) are lO K times actual values

NSCALE(5) M printed values of the abscissa

(X) have M digits following the

decimal point (M _ 9)

When standard scale factors are used, effective values of

I, J, K and M are 0,3,0 and 3 respectively.

7 September1965 2-99

b. NHL This is the numberof horizontal grid lines in the
graph image.

c. NSBH This is the numberof spaces between horizontal
grid lines.

d. NVL This is the number of vertical grid lines in the
graph image.

e. NSBV This is the number of spaces between vertical
grid lines.

f. IMAGE This is a dimensioned array in the users program
consisting of N locations where: N=P*(NSBH*NHL+l)
P=(NSBV*NVL+l)/6rounded to nearest integee.

g. XMAX This is the value of the abscissa at the right-
most grid line.

h. XMIN
grid line.

This is the value of the abscissa at the leftmost

i. YMAX This is the value of the ordinate at the upper-
most grid line.

j. YMIN This is the value of the ordinate at the lower-
most grid line.

k. BCD This is the Hollerith plotting character.

i. X This is a single location (or array name) containing
the _ coordinate(s) of the point(s) (Xi, Yi)"

m. Y This is a single location (or array name) containing
the _ coordinate(s) of the point(s) (Xi, Yi)"

n. NDATA This is the number of data points (Xi, Yi) associ-
ated with the arrays X and Y. With NDATAequal to l, a single
point will be plotted for a single execution of PLOT3. With
NDATAequal to Q, Q points (Xi, Yi) taken in sequencewill
be plotted for a single execution of PLOT3.

o. NCHARThis is the numberof BCD(Hollerith) characters,
including blanks, in the label array.

7 September 1965 2-100

. Restrictions on Arsuments--The following are the restrictions

on arguments:

NHL > 0

NSBH > 0

NVL > 0

NSBV > 0

NSBV*NVL <__i01
XMAX > XMIN

YMAX > YMIN

BCD > LEFT ADJUSTED BCD CHARACTER;

i.e., IH*, IHA, IH1, ETCo

The image array must be dimensioned at least 867 (Decimal)

locations. LABEL and BCD must contain Hollerith information

only. The arguments which deal directly with data values

(XMAX, XMIN_ YMAX, YMIN, X, Y,) must be in floating-point

mode.

(5) Deletin 6 the Printin5 of Certain Portions of the Graph: There

is a provision for deleting printout of certain items. These are:

i. Numeric values of the abscissa at the grid lines.

_. Numeric values of the ordinate at the grid lines.

i" Items _. and _.
4. The complete bottom horizontal grid llne.

_. Items 1. and 2.

_. Items _. and _.

i" Items _5", _2",--and _4"

This is accomplished by entry OMIT anytime before execution of FPLOTh.

CALL OMIT (ARG): where ARG is a positive number corresponding to one

of the above seven items.

To restore printing of any of the seven items, OMIT can be called with

ARG a negative number corresponding to the number of the item(s) to be

restored.

(6) Chansin 6 the Decimal Output Tape Durin 6 Execution: An entry

PLTAPE is available for changing the output tape during execution in

cases where the desired tape does not coincide with the standard out-

put tape.

For FORTRAN IV_ the calling sequence is: CALL PLTAPEo The next state-

ment must be WRITE (A, FORMAT), where A is the number of the output

tape and FORMAT is the number of a FORMAT statement.

7 September 1965 2-101

2.5.1.2

For FORTRAN II, the calling sequence is: CALL PLTAPE (N, CHAN), where

CHAN is 1 if channel A, and CHAN is 2 if channel B. Example:

CALL PLTAPE (7,1) causes all plotting output to be

written on A7 until another CALL PLTAPE (N, CHAN)

is executed.

FORTRAN Subroutines for Usin6 65K

The 7094 computers A, B, and C are equipped with 65K memory (i.e.,

65,536 words, rather than the standard 32,768 words). The additional

memory is upper memory or B bank, while the machine's normal memory

unit is the lower memory or A bank. Due to hardware design consider-

ations, B bank is usually treated as an alternate memory, except that:

i) certain machine features (e.g., trapping) always revert to A bank

and 2) others (e.g., I/0 activity) show a distinct preference for A

bank. For these reasons, upper memory has heretofore been inaccessible

to FORTRAN programs.

The FAP assembler (as well as SOS) will recognize the additional in-

structions needed to operate 65K. Either of two procedures may be

adopted, depending upon the requirements of the problem being coded.

Upper memory may be used as a data storage area, or it may be used to

contain an executable FORTRAN/FAP program. If used as a data storage

area, it is not possible for a FORTRAN program in A bank to refer

directly to quantities stored in B ban,;but routines are provided to

transfer data back and forth. All 32,768 words of upper memory may

be used. If used to contain an executable FORTRAN/FAP program, the

two banks of memory will be occupied by more or less independent

FORTRAN/FAP programs; but provision is made for transferring control

back and forth between them and for the exchange of COMMON data. It

is not intended that both procedures be used in the same job. The

following subroutines have been designed to facilitate the use of

65K memory by FORTRAN programmers.

(i) CALL STASH (X_ I_ J): This moves the array X of length I from

A bank to locations J through J + I _ 1 of B bank. I and J must be

integer variables or constants, with I > 1 and 0 < J < 32767. The

mode of X is immaterial. The argument I designates the number of

words to be transferred, so that if X is a double-precision or complex

array, I will be double the array dimension; or if the entire array

is not to be transferred, two or more calls are required.

(2) CALL BACK (X_ I_ J): This moves I words from locations J through
J + I - 1 of B bank to fill the FORTRAN array X in A bank. I and J

must be interger variables or constants, with I > 1 and 0 < J < 32767.

The mode of X is immaterial. The above comments on double-precision

and complex arrays apply here also.

7 September 1965 2_i02

(3) CALL COPY: The contents of lower memory from the normal FORTRAN

loading address (1448) through the top of COMMON (774618) are copied

into upper memory. The routine does not return to the calling routine,

but instead exits to the monitor.

(4) CALL B PROG: This statement may be executed anywhere within a

FORTRAN or FAP program in lower memory. It will transfer control to

upper memory at the first executable statement or instruction follow-

ing the CALL COPY which placed that program in B bank.

(5) CALL A PROG: This statement may be executed anywhere with a

FORTRAN or FAP program in upper memory. It will transfer control to

lower memory at the first executable statement or instruction follow-

ing the last CALL B PROG which had been executed.

(6) CALL FROM A (Yt K): This statement may be executed by a program
occupying upper memory. Y is assumed to be a variable in COMMON as

defined by this program. K words beginning with Y are filed with con-

tents of the corresponding COMMON cells of lower memory. Thus, if the

program in B bank defines: COMMON P, Q; R, S, T, ooo, then the state-

ment CALL FROM A (B, 3) will place the current values of Q, R, and S

into B, C, and D, respectively. K must be an integer variable or con-

stant greater than zero. The mode of Y is immaterial.

(7) CALL FROM B (Z_ L): Analogous to CALL FROM A, except that this

statement is to be executed by a program in A bank, and COMMON data

are transferred from upper to lower memory.

(8) Example for Using 65K: An example will help to clarify the use
of these routines. Let us assume that the programmer has a FORTRAN/

FAP program which is about to grow beyond single core memory capacity.

He must select certain portions of the job which can be detached,

subroutinized, and relegated to upper memory. Preferably, these should

be segments of the job which will not require the transfer of large

amounts of data between core banks. The main portion of the computa-

tion will occupy lower memory and will be called the A program. The

detached segments will occupy upper memory and will be called the B

program. Each must be a complete job in the FORTRAN sense; each must

have a main routine, and there must be no missing subroutines. COMMON

must be defined in such a way that variables which are evaluated in

one program, and used in the other, occupy the same position.

The two programs are loaded into the machine as separate, consecutive

jobs, each with I.D. and XEQ control cards. Either or both may be

compile and execute runs. The B program must be loaded first. All

data cards must follow the second, or A program (preceded by a *DATA

card).

7 September 1965 2-1o3

2.5.1.3

The first executable statement of the B program should be CALL COPY°

As that job is loaded, its only effect is to place the program in

upper memory. This routine exits to the monitor which then proceeds

to process the A program.

When the A program has been loaded, it begins to execute in the normal

fashion. At various points in the program it will be necessary to per-

form some computation which resides in upper memory. To do this, the

A program assigns a predetermined code value to a control variable in

COMMON, and then executes the statement, CALL B PROGo Control is thus

transferred to the second executable statement of B program (i.e., the

statement following CALL COPY) which should be a CALL FROM A (n, l) in

order to obtain the control variable.

B program may then use the control variable in an IF or computed GO TO

to determine what computation is to be performed. In carrying out this

computation, B program may obtain any necessary data from A program with

one or more CALL FROM A statements; and when finished, it may return to

A program by means of the statement, CALL A PROGo Control then reverts

to the statement in A program immediately following the CALL B PROG

which caused this diversion. The A program may obtain any results pro-

duced by B program by giving one or more CALL FROM B statements. Either

program may terminate the execution by means of a CALL EXIT statement,

and error diagnostics and floating_point traps are handled correctly

from either program. DUMP and PDUMP will not output correctly from B

program, and the debugging package cannot be used in B program. I/0

statements may not be used in the B program unless the program is

accompanied by a special I/O package, obtainable in the form of a bina-

ry deck from the Programming Methods Section.

There are console switches which must be set for the use of 65K, so it

is advisable to note such usage on the job request card in big letters,

and suitable comments followed by a PAUSE card among the control cards

preceding B program may be helpful.

Subroutine decks are available.

CalComp Subroutines for IBM 7094

FORTRAN II utility routines developed for the CalComp 570 plotter are

available on the system library tape. Since these routines vary signifi-

cantly from the old routines, they require some explanation.

The current routines (PLOT, PLOTS, SYMBL4, TRW, TRWS) remain in the

FORTRAN II library without change in calling sequence. The new routines

(CCPLOT, CPLOTS_ SYMBOL, and their associated routines) are recommended

for any future programming for the CalComp plotter, since the FORTRAN

IV routines are similar. A brief description of the new routines follows.

7 September 1965 2_i04

2.5.1.4

2.5.1.5

2.5.1.6

CALL CCPLOT (X, Y, IC)

CCPLOT is analogous to the current PLOT routine. It examines the

third argument to decide whether to lift or lower the pen, then moves

the pen to the position (X, Y)o X and Y are both floating-point num-

bers, representing the distance (in inches) of the point from the

origin. IC is a flxed-point number: _ 2 lower the pen; _ 3 raise the

pen. IC is a signed variable: Normally IC will be positive, indi-

cating that the plot is not yet finished. A negative IC instructs

the plot routine to establish a new origin at the coordinates (relative

to the current origi_ given°

CALL CPLOTS (BUFFER_ IDT; INDIC8)

Before attempting to do any plotting, CPLOTS (analogous to the current

PLOTS) should be called° This sets up a tape buffering area with the

dimensioned variable BUFFER° The first member of the dimensioned array

should be used. For example, if 512 locations have been set aside for

DATA, the following statements would be required before any plotting

was attempted:

DIMENSION DATA (512)

CALL CPLOTS (DATA (I), 512; INDIC8)

IDT is the dimension of the tape buffering area, and INDIC8 is an end-

of-tape indicator° It is originally set to zero by the routine CPLOTSo

If an end®of-tape is detected while writing the plot tape (A6 or AT),

all tape writing in the CaiComp routines are bypassed, and INDIC8 is

set nonzero° It is the programmer's responsibility to reset INDIC8 to

zero so that tape writing may resume (on A7 or A6). The programmer

should take the steps outlined in Section i of the CalComp Manual

whenever an end-of-tape is encountered.

CAnLs BOL .HEI.GHT,

SYMBOL (analogous to the current SYMBL4) is used to generate plotting

symbols and alpham_eric characters.

Plotting Symbols: (X; Y) is the center of the desired symbol. HEIGHT

is the height in floating-point inches. BCD contains a fixed-point

integer (0-16) to specify symbol tape. THETA is a floating-point

angle in degrees. A (-1) value of N specifies the pen is to be lifted

before moving to location (X; Y)o A (-2) value allows pen to remain

lowered when moving to (X, Y)o

Alphanumeric characters_ (X_ Y) is the lower left corner of first

character. HEIGHT is the height in floating-point inches. Spacing

7 September 1965 2-105

2.5.2.2

2.5.3.2

of characters is 6/7 (HEIGHT)° BCD is location of the first word of

Hollerith information. THETA is angle in floating-point degrees.

(THETA is positive counterclockwise; THETA = 0 indicates a character

perpendicular to X-axis.) N is the number of characters to be drawn.

A negative HEIGHT may be used to pick up words stored forward in core.

FORTRAN IV

UMPLOT Plotting Subroutine

See Paragraph 2.5. i. i

FORTRAN Subroutines for Usin$ 65K

See Paragraph 2.5.1.2

SUPPORT

FORTRAN Preprocessor

The FORTRAN Preprocessor is a 1401 program that is used to scan a

FORTRAN source program for errors. This helps the programmer to elimi-

nate those errors prior to the program being submitted to the 7094 for

compilation.

The complete program writeup and listing is available in the Program-

ming Methods Section. This is contained in the DSD Memorandum,

"FORTRA_N Preprocessor", dated 7/2/62.

Routines on the CI Utility Tape

The CI utility tape contains routines that are most frequently used

by GSFC programmers° _ne programs on the tape are located with CALL

CARDS which position the C1 tape to the record containing the desired

program° There are two ways to load the C1 program: l) C1 Program

Control Card--Each routine on the C1 tape has its own CALL CARD that

loads the desired program when a LOAD CARDS button action is taken.

All key settings, tape setups, etco, must be done beforehand. 2)

General Call Card--The proper program is read from the C1 tape by

inserting the octal record number of the desired program in the address

of the keys, and by pressing the LOAD CARDS button. The control pro-

gram halts at location 268, at which time key settlngs_ tape setups,

etc.# are performed° The program is executed by pressing the START

button° The record numbers indicated in the following descriptions

are in octal.

7 Sept@mber1965 2-106

2.5.3.3

2.5.3.4

2.5.3.5

2.5.3.6

2.5.3.7

WDOMFP-Octal Mnemonic/Floating Point Core Dump (Record Noo i)

This prints on the on-line printer or writes on tape A2 the contents

of a selected part of core memory, in octal or floating decimal.

Octal Dumps may be taken with or without mnemonics. The contents of

the console registers are recorded each time WDOMFP is loaded from

CI. Several dumps may be taken in succession° Starting and ending

addresses plus control information may be supplied either by control

cards (see writeup) or via the keys. Tape B2 is always required as

a scratch tape. This routine cannot be loaded with the General C1 Call

Card.

MXMRGE-Merge Mods with SQUOZE (Record No. 2[

This merges control cards and modification packet with SQUOZE tape on

B8. The control cards and mods may be read in on-line or from tape

A5. Output is a Job tape, produced on A3, to be used for an SOS exe-

cution run.

IBTD-Tape Dump (Record No. 3)

This prints or writes on tape A2 the contents of selected records or

files of any tape on any channel (except A2)o Input tape may be

dumped from its present position or may be rewound prior to dumping°

Input tape is not repositioned after dumping°

PPTDAC-Tape Duplicat__ee_a_ree__ecord Noo 51

This reads any tape on channel A and copies onto or compares with any

tape on channel Bo The munber of records or files to be so treated

may be specified on control cards (see writeup) via the keys. Codes

are also provided to space either tape backward or forward any number

of records or files, or to rewind either tape, or to write an end-of-

file on the B tape° When duplicating or comparing records, an end-of-

file mark is counted as a record° Miscomparison will produce an on-

line print giving the file and record number from the starting point

of that operation° If comparison is OK_ no print occurs°

MXHSPR-Print High_Speed from Log Ta_e (Record No. 12)

MXHSPR reads a B6 log tape and writes a duplicate on C6 while search-

ing for a time of lift_off in the logged data. Upon finding the time

of lift_off or using a time of lift-off of zero if no lift-off was

found; MXHSPR will search the B6 log tape for all data pertinent to

the first display° This data are unpacked, scaled and written on

the output tape° B6 and C6 are alternately searched for the various

displays until all data has been recorded on the output.

7 September 1965 2-i07

2.5.3.8 MXPRID-Select TTY Data from Log Tape (Record No. 13)

This is accomplished by pressing the console entry keys corresponding

to subchannel numbers whose messages are to be printed. MXPRLG will

read the B6 log tape for complete messages corresponding to these sub-

channels. The messages are written on the output tape and MXPRLG con-

tinues to search the log tape and the intermediate tapes for additional

messages. The sense lites are used as a binary counter to count the

number of channels to be processed.

2.5.3.9 MXCHER-Print Selected Subchannels from Mercury Log (Record Noo 14)

After reading a Mercury log tape on unit B6, select and print (off-

line) all 17-word blocks of information which are identified with a

subchannel number which has been selected for output. An option is

provided to permit the user to search the tape for several subchannels

in one pass or to perform a separate search for each subchannel re-

quested. In the first mode, entries are printed out in order in which

they occur on the tape, while in the second mode, all entries for a

given subchannel are printed together. The log tape is tested for

density mode and is checked for readability°

2.5.3.10 HSIN7-Decode and Print High Speed from Lo_ Tape (Record No. 15)

This decodes and prints the high speed input data (B/GE, IP 7090, and

Bermuda High Speed Radar) from a Mercury log tape°

2.5.3.11 MXPOCL-Print Mercur_ Lo 6 Ta_e in Octal (Record Noo 16)

This reads a Mercury log tape on unit B6 and prints (off-line) the

information it contains in octal. B6 is set to the proper density

mode and is checked for readability° An option is provided to per-

mit the user to print the contents of the whole tape, or to begin

printing just prior to the lift-off indication, or to print those

entries time tagged within a selected time interval.

2.5.3.12 MSHSPL_Log Ta_e Plotting Pro6ram (Record Noo 20)

This reads a Mercury log tape on unit B6, extracts information desig-

nated as DCC Subchannel 3 and plots, via the DCC and local plotboards,

that information relating to Cape Kennedy plot-boards l, 2, 3, 4

or Bermuda° The selection is made by key entry. Program stops occur

between various phases of the Mercury run°

2.5.3.13 GFCHEK-ChecksumCorrector (Record No. 25)

This reads binary cards on_line and repunches the same information,

but with the checksum recomputedo Sense switch options indicate to

7 September1965 2-108

the program whether input cards are row or column binary, and whether
they are two-word cards with the checksumin 9R (or Columns4-b in
the case of column binary) or 23-word cards with the folded checksum
in Columns25-39 or 9L (or Column3 in the case of column binary
cards). Output cards will be of the sameformat as of input cards.

2.5.3.14 OHCOi-Hollerith to OCT Pseudo-Op Card Image (Record No. 27)

This reads Hollerith cards on-line, and for each input card punches

on-llne a set of OCT pseudo-op cards which, if assembled with the

user's program, will generate a card image corresponding to the input

card. A blank card will separate each card image set of OCT's. A

sense switch option permits reading input cards in pairs so that the

contents of Columns 1-6 of the first card will appear as a location

symbol in the first OCT produced in that set, and the second card will

be treated as described above.

2.5.3.15 WDCTS-Card-to-Tape Simulator (Record No. 32)

WDCTS will transcribe cards from the card reader to any desired tape

in either BCD or column binary as designated by the standard control

punching in the cards. The format of the tape record is exactly like

that written by an off-line 1401, except that the information in

Columns 73-80 is replaced by blanks for Hollerith cards and by zeros

for column binary cards. Special control cards may be used to cause

the program to write an end-of-file mark or to cause the program to

clear itself out of memory and simulate the action of the Load Cards

key. Each Hollerith card is checked for illegal punches.

2.5.3.16 SUMMARY-Summarize SOS SQUOZE Tape Statistics (Record No. 36)

This locates and reads preface record from an A5 SQUOZE tape result-

ing from an SOS compilation or PS run and prints, on-line, various

information affecting the permissible size and mod deck which the

examined program will accept.

2.5.3.17 COL8ER-Update Symbolic Tape_ Produce Symbolic from Listin_ Ta_e

(Record No. 411

This routine is used to update symbolic tapes by adding or deleting

sections of a program by using the alter number generated by SOS.

2.5.3.18 MXILC0-Print Real-Time CORE Out[ut (Record No. 57)

This reads a tape on unit B6 containing real-time CORE (RTCOR) out-

put, and prints (off-line) the information it contains in the formats

specified by codes on the tape. Output is produced on unit A3o

7 September 1965 2-1o9

(2-ii0 Blank)

2.5.3.19 SHARE Library Index

A cross-reference index to the program library is maintained by the

Data Systems Division Programming Methods Section. It consists of a

Key Word in Context (KWIC) index to the library routines on file, plus

the title and descriptive listings sorted in various orders.

The subject codes are those defined by SHARE, but extended by several

new categories of a more specialized nature and applicable to the type

of programs used at the Goddard Space Flight Center. The SHARE routines

are identified by a serial number (in addition to the customary symbolic

name) consisting of the letters SDA (SHARE Distribution Agency), follow-

ed by a four-diglt number. It is planned to include programs other than

those distributed by SHARE in the program library. These programs will

be identified by a serial number which begins with letters other than
SDA.

More complete information on any of the routines in the cross-reference

index is available in either the SHARE library abstract listing or in

Building 3, Room]27.

There is also available a catalog of abstracts which lists programs

and subprograms contained in the reissued SHARE library, and which is

supplemented by routines from both Goddard Space Flight Center per-

sonnel and other personnel. Those desired programs unattainable in

the reissued SHARE library may be located in its predecessor dated

10/30/63; however, this old SHARE library catalog is not being main-

tained.

The programs are categorized according to two character classification

codes and are listed in alphanumeric order within each code. SHARE

codes consist of a letter followed by a digit. These codes have been

enlarged as a result of several locally defined categories of a more

specialized nature. Consequently. these codes consist of a period

which is followed by two characters°

7 September1965 Index 2-i

INDEXTOCHAPTER2

221.3(4); 2.4.2.1(3)_;
2.4.2.1(3)£

See also under stem words

$ 2.2.1.i
See also under stem words

2.2.1.i(6); 2.2.1.2(12)

2.2.1.4
See also under stem words

mmm)

See also under stem words

90PAC

processor 2.4.2.3

570 Plotter 2.4.1.4(1); 2.5 "1"3

727, 729, and 7330 Tape Units

(ref) 2.3.2"3

1301 and 13(_ Disk (ref) 2-3 .2.4

1401 machine

programs 2.5.3.1

7090/7094 machine
annotated bibliography

2.3.5

memorY usage 2.5 •i. 2

operation 2.3 o2"1;

2.3.1;

2.3.2.2

7090/7094 machine language

i/o 2o2.3°4

A

ABSMOD 2.2.1.2(6)

Absolute origin 2o2.1.3(3)

ACOSD 2.4.1.4(1);

ACOSR 2.4.1.4(1);

T 2o2.l.2(15)

*ALTE_ 2.2.1.2(17);

ASIND 2.4oi._(i);

ASI_ 2.4ol.4(1);

AT_ 2.4.1.4(2)

ATANGD 2.4.1.4(1);

ATANGR 2.4.1o4(1);

B

ACKSPACE 2°2.1.2(4)

BASIC 2.2.1.2(_)

Binary Symbolic subroutines

BSF 2.2°3 .4

(BSR) 2.4.1.4(3)

BSS 2.4.1.3

(BST) 2.4.L4(3)

(BUF) 2.4.1°4(3)

C

C1 tape 2.5.3.2

CalComp

570 plotter

subroutines

2.4.2.1(3)__

2.4.2o1(3)1

2.2.1o2(Z8)

2.4o2.1(3) I_

2.4.2.1(3)i

2.4.2.1(3) I_

2.&2.1(3)!

2.4.1.3

2.4.1.4(i)
2.5.1.3_ 2.5.1o5

7 September 1965 Index 2-il

INDEX TO CHAPTER 2 (Cont'd)

CALL

C (Cont'd)

2.2.1.2(4)!; 2.2.1.3(3);
2.2.3.2(4); 2.5.1.3(1)-(7);
2.5.1.4-2.5.1.6

Card Read/Punch 2.1.2

Card-to-Tape Simulator 2.5.3.15

* CARDS COLUMN 2.2.1.4(7)

* CARDS ROW 2.2.1.4(18)

CCPLOT 2.4.1.4(1); 2.5 .1"3;

2.5.1.4

C_N 2.4.1.4(4)

* C_I_ 2.2.1.4(16)

Channel tape assignments

Characters, special

Checksum corrector

CK 2.2.1.3(3)

CLOCKS 2.4.l.k(1)

COBOL
annotated bibliography

Coding sheets (ref) 2.3.6

COL8ER 2.5.3.17

* Comment 2.2.1.4(13)

Commercial Translator (ref) 2.4.2.2

COMMON 2.2.1.4(4); 2.5.1.2

2.2.3.5

2.2.1.3(3)

2.5.3.13

2.3.4

Configuration

machine 2.1.2

system 2.1.3

Control cards
FMS 2.2.1.4

format 2.2.1

IBJOB 2.2. i. 2

IBLDR 2.2.1.3

IBSYS 2 .2 .1.1

Core, usage 2.5.1.2; 2.5.1.2(8)

CORE

output, print realtime 2.5.3.18

COS 2.4.1.4(2)

COSD 2.4.1.4(1); 2.4.2.1(3)_

CPLOTS 2.4.1.4(1); 2.5.1.3;

2.5.1.5

CPREST 2.2.1.2(16)

(cs_) 2.4.1._(3)

CT (ref) 2.4.2.2

D

Data Channel 2.1.2

Data Communication Channel 2.1.2

Data Systems Division

system library 2.4.1.4(1);

2.4.2.1(3)

SDATA 2.2.1.2(8)

* DATA 2.2.1.4(9)

7 September 1965
Index 2-iii

INDEX TO CHAPTER 2 (Cont'd)

D (Cont'd)

DATAN 2.4.1.4(2)

SDATE 2.2.1.l(5);

* DATE 2.2.1.4(i0)

DCC 2.1.2

DCOS 2.4.1.4(2)

DD 2.2.1.2(5);

Debug, dictionary

2.2.1.2(5)_

DEBUG 2.4.2.1(3)2

* DEBUG 2.2.1.4(12)

Deck, structure 2.2;

DECK 2.2.1.2(5);

Decode 2.5 •3- i0

DEXP 2.4ol.4(2)

DFAD 2.4.1.4(2)

DFDP 2.4.1.4(2)

DFMP 2.4ol.4(2)

DFSB 2.4.1.4(2)

Dictionary of symbols

2.2.1.2(5)8

DINT 2.4,1.4(2)

Discrepancy Report

2.2.l.2(lZ)

2.2.2

2.2.1.2(6)

2.2.1.2(5)6.._

2.1.4

Disk 2.1.2

reference 2.3.2.4

SDDICT 2.2. i. 2 Note

DKgOUT 2.4.2.7

SDKEND 2.2.l.2 Note

DLOG 2.4.1.4(2)

DMOD 2.4.1.4(2)

Documents
annotated bibliography

listed by form number

listed by subject

subject index

(DRS) 2.k.lo_(3)

DSIN 2.4.1.4(2)

DSQRT 2.4.1.4(2)

.DSTRN 2.4.2.l(3)_

.DSTRO 2.4.2.1(3)_

Dump 2.2.3.3

DUMP 2.2.3.2(4);

E
m

EATA_ 2.4._.4(2)

ECOS 2.4.1.4(2)

EEXP 2.4.1.4(2)

(E_) 2.4.l._(3)

2.3.2 ff.
Table 2-4

2.3.2 ff.

Table 2-3

2o4.1.4(1)

7 September 1965 Index 2-iv

INDEX TO CHAPTER 2 (Cont'd)

E (Cont'd)

E_G 2.4.1.4(2)

_xI 2.4.1.4(2)

_4INI 2.4.1.4(2)

* ENDAL 2.2.1.2(19)

OFI 2.2.Z.2(4)2

SENTRY 2.2.1.2(i0); 2.2.1.3(2)

.ERAS 2.4.2.1(3)_

Errors 2.1.3; 2.1.4; 2.5.3.1

ESlON 2.4.1.4(2)

ESIN 2.4.1.4(2)

ESQRT 2.4.1.4(2)

ETANH 2.4.1.4(2)

(ETT) 2.4.1.4(3)

(EX_) 2.4._.4(3)

(EX_) 2.4.l.4(4)

SEX,CUTE2.2.1.1(4)

(EX_) 2.4.1._(4)

EXIT 2.4.1.4(4)

EXP 2.4.1.4(2)

F

FAP 2.4.1.2

7090/7094 programming (ref) 2.3.3.2

assemblies, labelling 2.2.1.4(15)

memory usage 2.5.1.2(8)

* FAP 2.2.1.4(8)

FATN 2.4.2.1(3)[

FBST 2.4.2.1(3)_

FCAB 2.4.2.1(3)_

FCAS 2.4.2.1(3)_

FCLG 2.4.2.1(3)_

FCNV 2.4.2.1(3)_

FCSC 2.4.2.1(3)_

FCSQ 2.4.2.1(3)_

FCXP 2.4.2.1(3)_

FDAT 2.4.2.l(3)_

SFDICT 2.2.1.2 Note

FDLG 2.4.2.1(3)_

FDMP 2.4.2.1(3)_

sc 2.4.2.1(3)

FDSQ 2.4.2.1(3)[

FDVCHK 2.4.2.1(3)_

FDX 2.4.2.1(3)_

7 September 1965 Index 2-v

INDEX TO CHAPTER 2 (Cont'd)

F (Cont'd)

FDXP 2.4.2.1(3)2_

FEFT 2.4.2.1(3)4_

(FIL) 2.4.1.4(3)

File Processor 2.4.2.3

FI_S 2.2.1.2(4)

FIOB 2.4.2.1(B)4_

FIOCS 2.2.1.2(4)

FIOH 2.4.2.1(B)4_

FIOS 2.4.2.1(B)4_

FIOU 2.4.2.1(3)4

Fixed point See FORTRAN II & IV

Floating point

dump 2.2.3.3; 2.5.3.3

See also: FORTRAN II & IV

FLOG 2.4.2.1(3)2_

FLOW 2.2.1.2(4)

FMS 2.1.1; 2.1.2; 2.4.1

control cards 2.2ol.4

IBSYS combined system 2.1.2

master tape 2. i. 3

$_sYs 2.2.i.1(5)

* Fom_P 2.2.1.4(4)

Forms (ref) 2.3.6

FORTRAN

annotated bibliography 2.3.5

loader 2.4.1.3

preprocessor 2.5.3.1

FORTRAN II

assembling 2.2.2.13

Assembly Program see FAP

compilation 2.2.2.10; 2.2.2.11;

2.2.2.12; 2.2.2.13; 2.2.2.14

compilation, binary decks 2.2.2.12

compiler 2.4.1.1

debug 2.2.2.14

diagnostic 2.2.3.1(1)

double precision math 2.4.1.4(2)

dump routines 2.2.3.1(2)

execution 2.2.2.9; 2.2.2.13;

2.2.2.14

library 2.4. i. 4

mathematics 2.4.1.4(i); 2.4.1.4(2)

plotting routines 2.5.1.3

single precision math. 2.4.1.4(2)

system library 2.2.3.1

transfer card 2.2.1.4(18)

utility routines 2.4.1.4(1); 2.5.1

Version III 2.1.1; 2.2.1.i(4) Note

Version III, processor 2.4.2.6

FORTRAN IV

binary mode tape 2.2.3.2(2)

binary tape, execution 2.2.2.5

compatibility 2.1.1

compilation 2.2.2.1; 2.2.2.3;

2.2.2.4
complex math. 2.2.3.2(1)3_

debug 2.2.2.8

double precision math. 2.2.3.2(1)2

execution, binary decks 2.2.2.2

execution, binary tape 2.2.2.5

I/O library 2.4.2.1(3)4

mathematics 2.4.2.1(3)_

mathematics, accuracy 2.2.3.2

7 September 1965 Index 2-vi

INDEX TO CHAPTER 2 (Cont'd)

F (Cont'd)

FORTRAN IV (Cont'd)
modification of PREST decks

2.2.2.6

multiple compilations 2.2.2.3

overlay 2.2.2.7

plotting routines 2.5.1. B

punch 2.2.3.2(35

single precision math.

2.2.B.2(1)1
utility routines 2.4.2.1(3)1;

2.5.1
Version 12, debug 2.2.3.2(5)

FOUT 2.4.2.1(35&

FOVERF 2.2.2.1(3)!

FPARST 2.4.2.1(3)_

FPRN 2.4.2.1(3)_

,FPTRP 2.2,1,3(4);

FPUN 2.4.2.1(3)_

FRCD 2.4.2.1(3)_

FRDB 2.4.2.1(3)_

FRDD 2.4.2.1(3)_

FRDU 2.4.2.1(3)_

FRWT 2.4.2.1(3)_

FSCN 2.4.2.1(B)_

FSEL 2.4.2.1(3)_

FSLBI 2.4.2.1(3)_

FSLBO 2.2.2.1(3) 4

2.2.2.1(3)5

FSLDI

FSLDO

FSLI

FSLITE

FSID

FSQB

FSSWTH

FTNH

FULIST

FVIO

FWRB

FWRD

FW_O

FWRU

FXEM

FXP

FXPF

GFCHEK

GO

2.4.2.1(3)_

2.4.2.1(3)_

2.4.2.1(3)_

2.4.2.1(3)_

2.&.2.1(35_

2.4.2.1(3)_

2.4.2.1(3)&

2.2.1.2(55

2.4.2.1(35

2.4.2.1(B5

2.4.2.1(3)_

2.4.2.1(B)h

2.4.2.1(35

2.4.2.1(B)

2.4.2.1(3)&

2.4.2.1(B)&

G

2.5.3.1B

2.2.1.2(2); 2.2.1.2(45 Note

J 7 September 1965 Index 2-vii

INDEX TO CHAPTER 2 (Cont'd)

Hollerith to

2.5.3.14

K
m

OCT pseudo-op cards

HSlN7 2.5.3. i0

I

ues 2.4.1.4(2)

IBCBC 2.4.2.1(5)

SIBYL 2.2.1.2(14)

IBSFAP 2.4.2.5

IBSYS 2.4.2

control cards 2.2.1.1

debug 2.2.3"2(5)

FMS combined system 2.1.2

master tape 2.1.3

utility routines 2.4.2.7

IBDBC 2.4.2.1 .IBSYS 2.4.2.1(3)_

IBDBI 2.4.2.1(3)5 $IBSYS 2.2.1.1(1);• - 2.2.1.4(1)

2.2.1.2(1);

$IBMAP 2.2.1.2(6)
count options 2.2.1.2(6)

IBDBL 2.4.2.1 IBTD 2.5.3.5

IBFTC 2.4.2.1(1) ICOS 2.4.1.4(2)

$IBFTC 2.2.1.2(5) 2.2.1.2(2)
options 2.2.1.2(5) $ID 2.2.1.1(2);

IBJOB 2.4.2.1 . Identification 2.2.1.4(2)

control cards 2.2.1.2 $IEDIT 2.2.1.2(4)6; 2.2.1.2(7);
processor 2.4.2.1 2.2.1.2(15) --

$1BJOB 2.2.1.2(4) options 2.2.1.2(14)

options 2.2.1.2(4) IEXP 2.4.1.4(2)

IBLDR 2.4.2.1; 2.4.2.1(4)
control cards 2.2.1.3 IFDP 2.4.1.4(2)

$1BLDR 2.2.1.2(7); 2.2.1.3(1) IFMP 2.4.1.4(2)

options 2.2.1.2(7) ILOG 2.4.1.4(2)

IBLIB 2.4.2.1(3) $1NCLUDE 2.2.1.3(4)

IBMAP 2.1.1; 2.4.2.1(2)
assembling 2.2.2.3; 2.2.2.4 Index registers 2.2.1.2(5)

7 September 1965 Index 2-viii

INDEXTOCHAPTER 2 (Cont'd)

I (Cont'd)

I/O units, standard
2.2.1.2116)

2.2.1.2(15)!; KEEP

(mOB) 2._.I.4(3)

IOCS 2.4.2.1(3)_; 2.4.2.4

.IOCS 2.4.2.1(3)_

.IOCSB 2.4.2.1(3)_

.I0CSF 2.4.2.1(3)_

.IOCSL 2.4.2.1(3)_

.iocs_ 2.4.2._(3)_

.IODEF 2.4.2.1(3)_

IODINE 2.2.3.1(3)

IOEX 2.2.1.2(4)

.IOEX 2.4.2.1(3)_

(IOH) 2o4.1.4(3)

(IOS) 2.4.1.4(3)

(Iou) 2.4.1._(3)

ISIN 2.4.1.4(2)

ISQRT 2.4.1.4(2)

J
w

.JBCON 2.4.2.1(3)_

_W0B 2.2.1.1(3); 2.2.1.2(3)

K

2.2.1.2(5)6; 2.2.1.2(5)8

Keys, setting 2.2.3.3

KWIC Index 2.5,3.19

reference 2.3.3 -I

L

SLABEL 2.2.1.3(5)

*L_BEL 2.2.1.4(15)

LABELS 2.2.1.2(4); 2.2.1.3(5)

LB 2.2.1.3(3)

LIBE 2.2.1o2(7)

* LIBE 2.2.1.4(17)

Library routines 2.4.1.4(1)

index 2.5.3.19

Links See Overlay

LIST 2.2.1.2(5); 2.2.1.2(6)

* LIST 2.2.1.4(5)

* LIST8 2.2.1.4(5)

Load, binary decks 2.2.2.4

Loader 2.4.2.1(4)

binary symbolic subroutines

LOG 2.4.1.4(2)

Log tape
print, high speed 2.5.3.7;

2.5.3.10
TTY data selection 2.5.3- 8

2.4.1.3

7 September 1965 Index 2-1x

INDEX TO CHAPTER 2 (Cont'd)

L (Cont'd)

LOGIC 2.2.1.2(4); 2.2.1.2(4) Note

oLOVRY 2.2.1.3(4); 2.4.2.1(3)_

.LXCON 2.2.1.3(4); 2.4.2.1(3)_

oLXSL 2.4.2.1(3)

M

m'ALTER See *ALTER

Mgo 2.2.1.2(5); 2.2.1.2(6)

M94 2.2.1.2(5); 2.2.1.2(6)

M94/2 2.2.1.2(5); 2.2.1.2(6)

Machine test subroutines 2.4.2.1(3)_

Macro Assembly Program See MAP

Magnetic tapes See Tapes

MAP 2.2.1.2(4); 2.2.1.2(4) Note

7090/7094 programming (ref)

2.3.3.3

Master Tape 2.1.3

Memory usage 2.5.1.2; 2.5.1.2(8)

Mercury Log Tape 2.5.3.9; 2.5.3.10

plotting program 2.5.3.12

print in octal 2.5.3.11

Merge 2.5.3°4

MFTC 2°2.1.2(6)

MINIMUM 2.2.1.2(4)

Mnemonics, dump 2.2.3.3

Monitor See IBSYS

MXCHER 2.5.3.9

MXHSPL 2.5.3.12

MXHSPR 2.5.3.7

MXII_0 2.5.3.18

MXMRGE 2.5.3.4

MXPOCL 2.5.3.11

MXPRLG 2.5.3.8

N

iNAME 2.2.1.2(9)

Names 2.2.1.1(4)

NO () 2.2.1.2(6)

NO ---
For instructions beginning with

NO, see the stem word, e.g.,

NOLIST, see LIST

0

OCT pseudo-operations

Octal

Octal

Octal

2.5.3.14

instruction 2.2.1.4(6)

mnemonic, core dump 2.5.3.3

operations, dump 2.2.3.3

$0EDIT 2.2.1.2(16)
options 2.2.1.2(16)

7 September 1965 Index 2-x

INDEX TO CHAPTER 2 (Cont'd)

0 (Cont'd)

0SCO1 2.5.3.14

() oK 2.2.1.2(6)

Origin, absolute

$ORIGIN 2.2.1.2;

symbol options

2.2.1.3(3)

2.2.1.3(3)

2.2.1.3(3)

Output See I/0

Overlay 2.2.1.2(4)_; 2.2.1.3(3);
2.2.1.4(16); 2.2.2.7; Fig. 2-5

90PAC processor

P

SPAUSE 2.2.1.1(7);

* PAUSE 2.2.1.4(14)

PDUMP 2.2.3.2(4);

Peripheral equipment

PLOT 2.5 -1"1(3);

2._.1.4(I)

2.1.2

2.5.1.3

PLOTS 2.5. i.3

Plotter 2.4.1.4(i);

Plotting subroutines
2.5.1.5; 2.5.3.12
calling sequence
See also: UMPLOT

PPTDAC 2.5.3.6

PREST 2.2.1.2(6);
2.2.1.2(16)note

2.5.1.3

2.5.1.I;

2.5.1oi(4)

2.2.1.2(16);

PREST decks 2.2.1.2(15);

2.2.1.2(16) Note

modification 2.2.2.6

Print, high speed 2.5.3.7;
subchannels 2.5.3.9

2.2.1.2(16)

2.5.3.10

Printer 2.1.2

Programming, aids
2.2.3

Programs
KWIC index

support

unique
utility

2.3.3.1;

2.5.3
2.4.1.4(1)
2.4.2.7;

2.5.3.19

2.5

Qualifier
2.2.1.2(4)

R

.RAND 2._.2.1(3)_

(RCH) 2.4olo4(3)

(Rm) 2.4.1.4(3)

(RDS) 2.4.1.4(3)

REF 2.2.1.2(5) & (6)

Reference cards (ref) 2.3 .6

REIMOD 2.2.1.2(6)

Report Generator 2.4.2.3

(BEE) 2.4.1.4(3)

7 September 1965 Index 2-xi

INDEX TO CHAPTER 2 (Cont'd)

R (Cont'd)

REQ 2.2"3"4

RESTART 2.4.2.8

R_ 2.2.1.3(3)

(REW) 2.&1._(3)

R_IND 2.2.1.2(_)5_

(RU_) 2.4.1.4(3)

Routines See Programs

* ROW 2.2.1.4(19)

RTCOR 2.5.3.18

CRY) 2.4.1._(3)

RUN 2.2.3-4

(RWT) 2.4.1.4(3)

S

(scH) 2.4.1.4(3)

SDA 2.5.3.19

SDD 2.2.1.2(5); 2.2°1.2(6)

(SET) 2.4.1o4(3)

S_mE 2.5.3.19

sIF_ 2.l.l_ 2.4.2.1(3)6_

si_ 2.4.1.4(2)

sIND _.4.1.4(1); 2.4.2,_(3)_

(SLI) 2.4.1.4(3)

(sin) 2._.1.4(3)

SOScompilation , tape statistics 2.5.3.16

memory usage 2-5 -1.2

update symbolic tape 2.5.3.17

sOURCE 2.2.1.2(4); 2.2.1.2(14)

(sP_) 2._.i.4(3)

S_T 2.4.1.4(2)

SQU0ZE 2.5.3.4
tape statistics 2o5.3o16

SRCH 2.2.1.2(15)

(SRD) 2.4.1.4(3)

Status Report 2.1.4

(STB) 2.4.1.4(3)

(s_) 2.4._.4(3)

(s_) 2.4.1.4(3)

(s_) 2.4.1.4(3)

Subchannels, print 2.5.3.9

Subroutines
listi_ 2._.2.1(3)_
See also: Programs

SUMMARY 2.5.3,16

Supplies
annotated bibliography 2"3'6

? September1965 Index 2-xii

INDEX TO CHAPTER 2

Support

SYMBL4

SYMBOL

2.5.1.6

* SYMBOL TABLE

Svmbolic

Symbols

SYSCK

2.2.1.3(3)

s (Cont'd)

routines 2.5.3

2.4.1.4(1); 2.5.1.3

2.4.1.4(1); 2-5 .1"3;

tape, update

2.2.l.2(5)6_.;

2.2.1.2(15);

2.2.1.4(11)

2.5.3.17

2.2.1.2(5)8_

2.2.1.2(16);

SYSIN 2.2.1.2(15)

SYSLB 2.2.1.2(15);

2.2.1.3(3)

2.2.1.2(16);

SYSMOD 2.2.1.2(6)

SYSOU 2o2.1.2(16)

System
configuration 2.1.3

Discrepancy Report 2.1.4

library 2.4.1.4(1); 2.4.2.1(3)

names 2.2.1o1(4)

Status Report 2.1.4

tapes 2.4

SYSUT 2.2.1.3(3)

T

TA_ 2.4.1.4(2)

Tape units 2.1.2

reference 2.3.2.3

(Cont'd)

Tapes
compare 2.5.3 .6

dump 2.5.3.5
duplicate 2.5.3.6

maintenance 2.1.3

master 2.1.3

system 2.4

utility 2.5 .3.2

(TCO) 2.4.1.4(3)

(TEF) 2.4.1.4(3)

(TES) 2.4.1.4(4)

Test indicator subroutines

2.4.2.1(3)_

TEXT 2.2.1.2(7)

STEXT 2.2. I. 2 Note

(TRC) 2.4.1.4(3)

_w 2.5°1.3

TRWS 2.5 .1"3

(TSB) 2.4.1.4(3)

(TSH) 2.4.1.4(3)

(TS_) 2.4.1.4(3)

U
m

UMPLOT 2.2.3.2(6); 2.4.1.4(1);

2.4.2.1(3)!; 2.5.1.1

compatibility 2-2.3 "1(4)

UNITXX 2.4.2.1(3)_

7 September 1965
Index 2-xlli
(_st page)

INDEX TO CHAPTER 2 (Cont'd)

U (Cont'd)

UT

Utility

routines

tape

WDCTS

WDOMFP

WEF

(WEF)

(WE_)

2.2.1.B(B)

2.4.2.7;
2.5.3.2

W

2.5.B.15

2.5.3.B

2.2.3.4

2.4.l.4(B)

2.4.1.4(B)

2.5

(w_a)

(wRs)

(wTc)

XIT

XI_C

XR

* XEQ

2._.l._(B)

2._.L4(B)

X

2.4.2.1(B)_

2.2.1.2(5)

2.2.1._(B)

25 February 1966 3-i

CONTENTS

CHAPTER 3 CAMEO

Paragraph

3.1

3.2

3.3

Pag____e

CAMEO SYSTEM DESCRIPTION 3-1

3 .i .i

3.1.2
3 .i .3

3 .I .4

SYSTEM STRUCTURE 3-1

MACHINE CONFIGURATION 3-3

SYSTEM TAPE MAINTENANCE 3-5

ERROR REPORTING 3-5

DETAILED PROCEDURES 3-5

3.2 .i CAMEO CONTROL COMMANDS 3-5

3.2.1.1 Encoding Control 3-6

3.2.1.2 Execution Control 3-6

3.2.2 CAMEO CONSOLE SETTINGS 3-6

3.2.2.1 Encode and Execute _ 3-6

3.2.2.2 Encode and Save on Self-Loading Tape.. 3-7

3.2.2.3 Load and Execute 3-7

3.2.2.4 Postmortem Decimal Dump 3-7

CAMEO BIBLIOGRAPHY. 3-9

3.3 .i

3.3.2
3.3.3

3.3.4

PROGRAMMING IN MYSTIC: A PRIMER ON THE USE OF CAMEO 3-9

CAMEO SYSTEM DESCRIPTION 3-9

CAMEO: UNIVAC 1107 USAGE 3-9

CAMEO: IBM 7094 USAGE 3-9

25 February 1966 3-ii

Paragraph

3.4

CONTENTS (Cont'd)

Pag____e

3.3.7

MYSTIC DICTIONARY ROUTINE 3-10

RI5 CAMEO QUICK DIAGNOSTIC FUNCTION PROGRAM

DESCRIPTION 3-10

R143 TAPE MODIFICATION ROUTINE PROGRAM

DESCRIPTION 3-10

PROGRAMMING SUPPORT PACKAGES 3-11

3.4.1 UTILITY PACKAGE 3-11

3.4.1.1 Print-out Memory 3-11

3.4.1.2 Interval Core Dump 3-11

3.4.1.3 Change of Code 3-11

3.4.2 ARITHMETIC PACKAGES 3-11

3.4.2 .i

3.4.2.2

3.4.2.3

3.4.2.4

3.4.2.5

Vector Arithmetic Package 3-11

Matrix Arithmetic Package 3-11

Fourier Series Arithmetic Package . . 3-12

Power Series Arithmetic Package 3-12

High-Speed Elementary Functions

Package 3-12

3.4.3 SPECIAL PURPOSE PACKAGES 3-12

3.4.3.1 Realtime Adapter 3-12

3.4.3.2 FACIL (FORTRAN Assembly Compatible

Interface Linkage) 3-12

3.4.3.3 Mystic Dictionary Routine 3-12

3.4.3.4 Drum Storage Adapter 3-13

3.4.4 PERIPHERAL EQUIPMENT UTILITY ROUTINE 3-13

3.4.4.1 Table of Contents 3-13

3.4.4.2 Tape Modification Program 3-13

3.4.4.3 Mystic List 3-13

3.5 ENCODER TAPES 3-14

3.6

3.5 .i

3.5.2
3.5.3
3.5.4

ENCODER FOR UNIVAC 1107 3-14

ENCODER FOR IBM 7094 (32K) 3-14

ENCODER FOR IBM 7094 (65K) • 3-14

ENCOD FOR 7094(DO, LE i[i[i [3-14

9X;NCTIONAL AIDS AND CODING SHEETS 3-15

MYSTIC STORAGE MAP 3-15

CAMEO CODING SHEET 3-15

25 February 1966 3-iii

_ragraph

3.7

3.8

CONTENTS (Cont 'd)

JOB PROCEDURE

AOPB FUNCTIONAL SUBROUTINES

Pag__e

• 3-15

• • • 3-18

Figure

3-1

3-2

3-3

ILLUSTRATIONS

Pag____e

Flow Diagram of CAMEO Operation 3°2

Mystic Storage Map Form 3-16

CAMEO Coding Form 3-17

Table

3-1

3-2

TABLES

Pag____e

Major Computer Equipment 3-3

Peripheral Equipment 3-4

25 February 1966 3-1

CHAPTER 3

CAMEO

3.1

3.1.1

SYSTEM DESCRIPTION

This chapter describes the Computer-independent Abstract Machine-

language Encoder and _Operating-system and its us_. The C_MEO system

is available on all Goddard Space Flight Center Data Systems Division

large scale computers.

CAMEO is designed to process a variety of related or unrelated jobs

sequentially or individually with complete operator convenience and

control. With complete control in the hands of the operator, jobs

are processed more responsibly and intelligently with less attention

to strictly operational requirements demanded of the programmer.

SYSTEM STRUCTURE

There is a CAMEO for the 7094 data processing equipment and a CAMEO

for the ll07 data processing system. On both systems, CAMEO is on a

self-loading magnetic tape, a copy of which is stored at the console

of the A, B, C, E, F, G, H, and J computers.

The flow diagram (Figure 3-1) illustrates the various functional com-

ponents of CAMEO and the paths of control between them. The notations

on each line indicate the command, condition, or action which causes

that path to be taken.

Tape assignments within CAMEO are entirely at the option of the pro-

grammer and, for production work, at the option of the operator as

well. Any tape may be used in a BCD mode or a binary mode or in a

mixed mode. For instruction in the use of CAMEO, consult Programming

in M_stic: A Primer on the Use of CAMEO, X542-64-393, December 1964.

25 February 1966 3-2

<

_, oZ
0 <
II :E A

'" _ I o

Y : Z (0
0 <

= IE
_ o

U

LU m

I1_ W Q. -

0
0 0 r_ _ 0

n- Z _J

_o

Z
0

k-

<
n-
Ld
n
0

0
LQ

0

rr
_0

r_

0
_J

?

L_
n,"

b.

25 February 1966 3-3

3.1.2 MACHINE CONFIGURATION

The progranmer using the Goddard Space Flight Center computer complex

has a vast quantity of data processing equipment at his disposal. The

CAMEO system operates on these large scale computers. A partial list

of this equipment is given in Table 3-1. In addition, there exists an

associated collection of peripheral equipment for off-line support.

A partial list of this equipment is given in Table 3-2.

Table 3-1. Major Computer Equipment

Bldg. Computer Memory

Loc. Facility Size

14 A-7094 65K

14 B-7094 65K

3 C-7094-II 65K

i E-7094-II 32K

3 F-7094 32K

14 II07G* 65K

14 II07H* 65K

Magnetic

Tape Units

14-729-IV

14-729-IV

14-729-IV

Line

Printer

Card Card

Reader Punch Disk

716-I

716-I

716-I

7223-I 1301-II

7223-I 1301-II

7223-I 721-I 1301-II

Data

Channel DDC

3 Yes

3 Yes

3 Yes

2 No12-729-IV

4-729-VI

12-729-IV

24

16

716-I

716-I

1

711-I 721-I

711-I

i i 2 Drums

i i 2 Drums

2 No

3 No

3 No

*Paper tape reader/punch

25 February 1966 3-4

Table 3-2. Peripheral Equipment

Bldg. Computer
Loc. Facility

14 A-IBM-1401

14 D-IBM-1401

14 E-IBM-I401

14 F-IBM-1401

1 IBM-1460

14 I-IBM-7010**

14 IBM-1401

Memory
Size

1.4K

4K

4K

8K

8K

100K

8K

Magnetic

Tape Units

1-7330

2-7330

2-729-II

2-729-II

4-729-VI***

2-729-IV***

8-729-Iv

4-729-IV

Card

Read/Punch

1012-1"

1402-I

1402-I

1402-I

1402-1

1402-I

1402-1

Line

Printer

1403-II

1403-II

1403-II

1403-II

1403-III

l_03-III

1403-II

* Paper tape reader/punch

** 1301 disk

*** Switchable units

a

25 February 1966 3-5

3.1.3

3.1.4

3.2

3.2 .i

3.2.1.1

SYSTEM TAPE MAINTENANCE

The Advanced Orbital Programming Branch (AOPB) of the Data Systems

Division has primary responsibility for maintaining the CAMEO system

tape. Tape revisions or updating occur periodically as a consequence

of one or more of the following conditions:

(i) A requirement to translate valuable additions to GSFC hardware

into software features.

(2) Spin-off from a continuing research and development effort

in computer programming.

ERROR REPORTING

The Advanced Orbital Programming Branch (AOPB) of the Data Systems

Division has the responsibility of maintaining the CAMEO system.

Any question regarding system utilization and system discrepancies

should be directed to AOPB personnel. The current method of report-
ing system discrepancies is verbal.

DETAILED PROCEDURES

This section includes several illustrations showing computer set-up

for a number of typical runs; presents a description of the control

commands and their use; and offers means by which to use CAMEO effec-

tively.

CAMEO CONTROL COMMANDS

This paragraph presents in detail a description of the control commands

recognized by CAMEO. The user controls and directs the processing of

his job through the operator by requesting settings of console switches

thereby directing CAMEO to perform any one of several functions.

Encodin 6 Control

(i) Initial Input Mode Switch: Setting this switch causes CAMEO to

begin encoding by reading from the card reader. This switch is

Sense Switch #l on the 7094 and Jump Switch #15 on the ll07. The input

mode is controlled internally by the dot (.) command after encoding
starts.

(2) Program Save Switch: Setting this switch causes the encoded

program to be recorded on a self-loading magnetic tape for later

reloading. This switch is Sense Switch #2 on the 7094 and Jump
Switch #14 on the &lOT.

25 February 1966 3-6

3.2.1.2

3.2.2

3.2.2.1

(3) Unit Program Switch: Setting this switch causes the tape unit

containing the source program to rewind following CAMEO encoding

since it is not part of a batch run. This switch is Sense Switch

_3 on the 7094 and Jump Switch _13 on the 1107.

(4) Error B_ass Switch: Setting this switch causes the CAMEO en-
coder to bypass any source program errors detected by simply deleting

the erroneous commands and continuing instead of halting for operator

correction. This switch is Sense Switch _4 on the 7094 and Jump Switch

_12 on the 1107.

(5) Cumulative Encoding Switch: Setting this switch causes CAMEO

when loaded to leave core memory undisturbed and to encode the coming

program in with the contents of core as found. This switch is Sense

Switch_5 on the 7094 and Jump Switch#ll on the ll07.

Execution Control

Interrupt-unload Switch: Setting this switch causes the running pro-

gram to be interrupted at the next flow connector execution and to

be recorded on a self-loading magaetic tape for later restart. This

switch is Sense Switch #2 on the 7094 and Jump Switch #14 on the ll07.

(see3.2.1.1(2)).

CAMEO CONSOLE SETTINGS

CAMEO processes a job not under the control of a control deck but

rather under the control of switches set at the computer console by

a person responsible for successful completion of the job. There

follow some examples of typical machine set-ups and console settings

to illustrate the various operations performed under CAMEO.

Encode and Execute

Machine Set-up

CAMEO Element 7094 unit i107 unit

Encoder ready

Source deck ready

Source tape ready

on tape A1

at Card Reader

on Tape A2

Console Switch Settings

CAMEO Switch 7094 Switch

on Tape 2-0

at Card Reader (12-0)

on Tape 2-1

i107 Switch

Initial Input Mode

Unit Program

Sense Switch 1

Sense Switch 3

Jump Switch 15

Jump Switch 13

25 February 1966 3-7

CAMEO Action

Operator Action

7094 Action i107 Action

3.2.2.2

Start Press Load Tape Bootstrap from 2-0

Encoding will begin with source cards. A dot (.) card in the deck will

cause encoding to continue from that point with the tape. On the tape,

a dot (.) record may be used to cause to return to encoding from the

card reader.

Encode and Save on Self-Loading Tape

Machine Set-up

CAMEO element 7094 unit 1107 unit

Encoder ready

Source deck ready

Source tape ready

Save tape ready

on Tape A1

at Card Reader

on Tape A2

on Tape A3

The Operator Action is the same as in 3.2.2.1

Console Switch Settings

CAMEO Switch 7094 Switch

on Tape 4-0

at Card Reader (12-0)

on Tape 4-i

on Tape 4-2

ii07 Switch

3.2.2.3

Initial Input Mode

Unit Program

Program save

Sense Switch i

Sense Switah 3
Sense Switch 2

Jump Switch 15

Jump Switch 13

Jump Switch 14

When encoding is complete the encoded program is written on a self-

loading tape for later use.

Load and Execute

CAMEO Element

Machine Set-up

7094 unit liO7 unit

3.2.2.4

Program ready on Tape A1 on Tape 4-0

No switches are set at the console and the Operator Action required
is the same as in 3.2.2.1.

Postmortem Decimal Dump

Machine Set-up

CAMEO Element 7094 unit ll07 unit

Encoder ready

Dump ready

on Tape A1

on Tape A2

on Tape 4-6

on Tape 4-1

25 February 1966 3-8

CAMEO Switch 7094 Switch i107 Switch

Unit Program Switch Sense Switch 3

Cummulative Encoding Switch Sense Switch 5

Jump Switch 13

Jump Switch ii

The Operator Action required is the same as in 3.2.2.1.

25 February 1966 3-9

3.3

3.3.1

3.3.2

3.3.3

3.3.4

CAMEO BIBLIOGRAPHY

This section provides a list with abstracts of documents on CAMEO.

Programming in MYSTIC: A Primer on the Use of CAMEO

X-542-64-393--Goddard S_ace Flight Center

The aim of this document is to guide the beginner in learning the

use of CAMEO. It provides a comprehensive description of the MYSTIC

command repertoire and presents to the reader a set of representative

exercises.

CAMEO System Description

X-542-64-148--Goddard Space Flight Center

This document presents a system description of CAMEO and of the

MYSTIC language that is the input to the CAMEO system. It develops

the preparation of a problem for solution by presenting a typical

problem. There is also included a brief description of the system's

performance since its inception in mid-1955. As an introduction,

this document offers a simplified analysis of the complete program

production process as it is accomplished by a composite system made

up of men and a machine.

CAMEO: Univac ll07 Usage

X-542-64-248--Goddard Space Flight Center

This document is concerned with the information necessary for the

operation of CAMEO on the Univac ll07. It describes tape, card,

and console set-ups; how halts are handled; and shows the typewriter

messages generated at the time of normal stops or error halts. A

complete listingof the Sleuth II program which does the encoding

and a flow diagram of that program are attached to provide answers

to any questions that may arise about error recovery, I/O operations

and floating point adjustments. It is not necessary to be familiar

with the Univac ll07 to use this system, but the listing and diagram

are provided for those who are interested in the details of the en-

coding system.

CAMEO: IBM 7094 Usage

X-542-64-363--Goddard Space Flight Center

This document covers the necessary steps in operation of the CAMEO

system on the IBM 7094. It describes the input to the CAMEO encoder,

tape assignments, console operations, sense switch settings, output,

and CAMEO halts, as well as supplementary operations which are used

to control encoding in the 7094 CAMEO. It supplies information con-

cerning the duplicating of the machine language program tape and

generating of the CAMEO tape. The 7094 flow diagram and the CAMEO

FAP listing are included for completeness.

25 February 1966 3-10

3.3.5

3.3.6

3.3.7

MYSTIC Dictionary Routine

X-542-65-17--Goddard Space Flight Center

This document describes how the MYSTIC Dictionary Routine is used to

provide rapid communication between programming systems by permitting

the translation of MYSTIC programs to computers for which no CAMEO

compiler exists. There are reproductions of the MYSTIC Memory Maps

of the Executive Routine and the subroutines written for us by this

program; flow diagrams of the program; and a listing of the source

program.

R15 CAMEO Quick Diagnostic Function Program Description: AOPB
Systems Manual

X-542-65-119--Goddard Space Flight Center

This document describes how the CAMEO quick diagnostic function is

used to analyze a MYSTIC program to provide an index of instruction

line numbers versus input program addresses. The index will dis-

tingulsh those instructions which alter the contents of an address

from those which use the contents of an address. Also, for each

address it provides a list of all Op Codes operating on it.

R143 Tape Modification Routine Program Description:
Manual

X-5_-65-215--Goddard Space Flight Center

AOPB Systems

This document describes how the utility program R143 is used for

modifying_r updating) MYSTIC and other BCD tapes. It may be used

to delete or insert records or files, and provides a fast and easy-

to-use means of program maintenance, thereby reducing the need to

retain, manually update, and reconvert card decks. The document

further contains a listing of a sample modify deck and the on-line

output produced during the run, along with a description of the on-

line output.

25 February 1966 3-11

3.4

3.4.1

3.4.1.1

3.4.1.2

3.4.1.3

3.4.2

3.4.2.1

3.4.2.2

PROGRAMMING SUPPORT PACKAGES

This section collects descriptions of the use of many of the pre-

programmed packages available to programmers of the Advanced Orbital
Programming Branch.

UTILITY PACKAGE

This package is used by the CAMEO programmer to checkout MYSTIC

programs.

Print-Out Memory (FO04)

This subroutine prints on line or writes on tape the contents of

operand memory in floating point decimal five locations per line.

Interval Core Dum_ (F062)

This subroutine is used to dump intervals of core memory between

specified core locations at specified points during a program run.

Core intervals are dumped prior to the execution of a specified
Begin Command.

Chan_e of Code (F177)

This subroutine is used to make temporary changes in a MYSTIC

program at execution time in MYSTIC but without re-encoding.

ARITHMETIC PACKAGES

These packages are used by the CAMEO programmer to simplify his

work by employing the notation of the problem in the programming
of scientific problems.

Vector Arithmetic Package

This package allows vector operations to be performed on the

contents of three consecutive addresses in the manner of a two

address machine. Operations permitted are: move, take magnitude,

take direction (unitize), add, subtract, dot product3 cross product,
scalar multiply.

Matrix Arithmetic Package

This package allows matrix operations to be per_rmed on the con-

tents of specified addresses in the manner of a two address machine.

Operations permitted are: multiply, invert, transpose.

25 February 1966 3-12

3.4.2.3

3.4.2.4

3.4.2.5

3.4.3

3.4.3.1

3.4.3.2

3.4.3.3

Fourier Series Arithmetic Package

This package allows Fourier series operations to be performed on

the contents of specified addresses in the manner of a two-address

machine. Operations permitted are: move add, subtract, multiply,

term extract, differentiate, scalar multiply, integrate.

Power Series Arithmetic Package

This package allows power series operations to be performed on the

contents of specified addresses in the manner of a two-address

machine. Operations permitted are: move, add, subtract, multiply.

Hi_h-speed Elementary Functions Package

This package provides the high-speed computation of elementary

functions by way of optimized machine language programs to compute:

reduced angle, arc sine/arc cosine, arc tangent, exponential,

natural logarithm, sine/cosine, square root.

SPECIAL PURPOSE PACKAGES

These packages are designed to make available to the CAMEO pro-

grammer some of the special-purpose modifications of GSFC equipment

for use on specific problems which would benefit from them.

Real-Time Adapter IBM 7094

This program allows use of Mystic routines in the real-time mode.

This adapter was used to support a real-time fly-by of a SYNCOM

satellite over Wallops Island. The one adapter introduces the

entire CAMEO system to real-time applications.

FACIL (Fortran Assembly Compatible Interface Linkage)

This subroutine provides linkage between programs coded in Fortran IV

and subroutines initially coded in Mystic and converted in IBMAP.

MYSTIC DICTIONARY ROUTINE (See GSFC Document_ X-542-65-17)

This program is used to provide rapid communication between pro-

gramming systems and expedite the translation of Mystic programs

to computers for which no CAMEO compiler exists. Since Mystic

commands are very similar to Macros, they can be defined prior to

any processing. A change in the definition of the Mystic commands

produces a new set of operations and thus allows a variety of output

25 February 1966 3-13

3.4.3.4

3.4.4

3.4.4.1

3.4.4.2

3.4.4.3

languages. The Mystic program to be converted must be on tape in

BCD. _he Memory Map and dictionary are on cards. There are two

options in this program that allow the user to choose between naming

symbolic references in the program or allowing the routine to compute
the references.

Drum St0ra_.e Adapter (ll07)

This program allows the Mystic programmer to use the ll07 magnetic

drum storage and an indirectly addressed large-scale memory.

PERIPHERAL EQUIPMENT UTILITY ROUTINES

These routines are used to facilitate program development, system

development, and program and system documentation.

Table of Contents

Using a set of control cards and the AOPB Functions Tapes as input

to the IBM 1401, this routine produces a Table of Contents of the

AOPB Function Tapes. This Table of Contents includes each routine
name, description, and where it may be found (i.e., volume number

and page number) in the AOPB Functions List. The Table of Contents

is keyed to the Mystic list.

Tape Modifications Program

This IBM1401 program is used to modify BCD tapes (usually BCDpro-

gramtapes). The input consists of the tape to be modified and a

card deck containing control cards and any desired modifications.

The output is the modified tape and a listing of the modified tape,

preceded by a table indicatingeach modification. The listing of

the modified tape may be either an unedited, single-spaced listing,
or an edited M_stic Listing (see 3.4.4.3).

Mystic List

This routine is used to produce edited listings of CAMEO routines

and programs. The listings are used to facilitate program develop-

ment and for program documentation. The IBM 1401 version accepts

as input either cards or tape and produces, at the end of the list-

ing, an index of subroutines by page number and an index of sub-
routines by K-card. he Univac 1004 version accepts only card input

and does not produce the subroutine indices.

25 February 1966 3-14

3.5

3.5 .I

3.5.2

3.5.3

3.5.4

ENCODER TAPES

This section describes in brief the characterization of the several

encoders that are embedded in the CAMEO system. These Mystic

compilers operate under the same principle and are available on the

Univac ll07 and the IBM 7094 32K and 65K.

ENCODER FOR UNIVAC ii07

The Mystic encoder written in the ll07 SLEUTH II assembly language

is available for encoding on Mystic programs to be run on the ll07

computer. The programmer should indicate that his program is to

be run on the ll07 when submitting his job request card.

ENCODER FOR IBM 7094 (32K)

The Mystic encoder written in the FORTRAN ASSEMBLY PROGRAM (FAP)

language is available for encoding Mystic programs to be run on

the 7094 32K computer. The programmer should indicate that his

program is to be run on the 7094 32K when filling out his Job

request card.

ENCODER FOR IBM 7094 (65K)

The Mystic encoder written in the FORTRAN ASSEMBLY PROGRAM (FAP)

language is available for encoding Mystic programs to be run on

the 7094 65K computer. The programmer should indicate that his

program is to be run on the 7094 65K when submitting his Job

request card.

ENCODER FOR IBM 7094 (DOUBLE PRECISION)

A Mystic encoder written in the FORTRAN ASSEMBLY PROGRAM (FAP)

language is available for encoding 16 digit Mystic programs to

be run in double precision on the 7094. Double-preclsion is a

technique for carrying out floatlng-point calculations with twice

the normal number of significant places. Programmers desiring

double-precision should so indicate by specifying the 7094 double-

precision encoder on the Job request card.

25 February 1966 3-15

3.6.2

3.7.2

3-7.3

3.7.4

FUNCTIONAL AIDS AND CODING SKEETS

MYSTIC STORAGE MAP

The Mystic Storage Map (see Figure 3-2) is designed to aid in alloca-

tion of storage. Each page of a map can be used to specify the con-
tents of a block of one hundred locations.

CAMEO CODING SHEETS

The CAMEO Coding Sheets (see Figure 3-3) are so designed that the

formats of the various instructions are apparent. This coding paper

facilitates both the writing and the keypunching of programs.

JOB PROCEDURE

DEFINITION

l) Define the problem, limits of variables, input, desired output.

2) Analyze the proposed technique of solution.

3) Organize and flow chart the steps necessary for solution.

DEVELOPMENT

l) Acquire necessary standard functions from AOPB functions library.

If program is long, put these functions on tape.

2) Acquire Prlnt-Out Memory, Interval Core Dump, One Word Load sub-

routines and include them in the program.

3) Write routines specific to the problem using CAMEO Coding Forms
and CAMEO Memory Maps.

4) Obtain Mystic Listing of the program and use this to check the

program.

TESTING

l) Make any necessary or desirable changes in the program.

2) Obtain Mystic Listing of the program for checking.
3) Test the program.

4) Check results. If results are correct, proceed to step 5). If

results are not correct, consider use of Interval Core Dump for
analysis of errors and proceed to step 1).

5) Make and check self-loadlng binary systems tape.

DOGUMENTATION

l) Review and, where necessary, modify documentation developed in
Paragraphs 3.7.1 and 3.7.2.

2) Include the following:

a. Mystic list of the program

b. Memory Map of the program

c. Sample input

d. Sample output
e. Flow chart

25 February 1966 3-16

MYSTIC PROGRAM NO.

DESCR:PTION:

MYSTIC STORAGE MAP

PAGE--OF--

PROGRAMMER '

O0
I

O5
I

10

15

20
|

,'2R

, 301

.3g

, 413

,45

50

, 55]

60
!

,65

, '70

,'75

, 80

,85

I 90

,95

NOTES :

O0

I0 tl

IS II

iS

I0

$11

40

IS

IS

I0

IIII

70

?$

II0

to

Ill

le

It

II

51

It

?1

71

|1

II

II

Ol

07

II II

t? II

21 I$

21' II

II II

31' |II

41 I$

41 41

III II

IS1' II

II II

17 II

1'1 71

1'7 ?l

II II

17 II

II II

I? II

Mystic Storage Map

OI 04

OI OI

14

II

14

II

II

$1

44

41

!14

It

14

It

74

1'l

Ill

II

114

!1

Figure 3-2.

25 February 1966 3-17

L_
Z

0
U

0
UJ

U

777-]77- -. 3] -]_ :-7-

`1 I " 4 "I 4 "4 "4 "4 - 4 4 - - _ , _ , • _

I "4 4 " -4 4 -4 4 -i 4 - -4 l

IJ

'1 7 1 1 t "t -_ -

/

"I I "1 .I _ "1 , _ 4 , • , _ ._

....... 7 "7 " ' , -i -i _ L)
U.

7 '1 1 '`1 _ -I • 4 4 . , 4 4¢/2

h

• 1 "I -t ,_ 4 "4 • "_ 4 . , 4 . - - _ Z

......... t%-

Z

"m" " " 7 7 " " " 1 1 1 °' " " " 4

..... <

0 IX

u : : : : : : : - : 8
0 n,,,

'1 7 " 1 1 1 1 "t "t - 4 '4 - - - 4 4 -4 4 - . J j

t--
1 1 • t 4 4 4 ,4 ,4 . ,,,I ,4

'_ _ 0

UJ

...... L)

Z

<
>

<

'=

:r

C

"0

"I I " "I I 1 _ - -

, 4 4 4 . , , , ,

,_ 7 7 - -1 -_ "1 --I--I--t- -I -I - -_ - 4 --I 4 q - - - 4 J J -I

........ i 1]]: i i :i:-_: . .
'liD'--

,a ¢_ ,.,', o

Figure 3-3. CAMEO Coding Sheet

25 February 1966 3-18

38 AOPB FUNCTIONAL SUBROUTINES

The Advanced Orbital Programming Branch (AOPB) has a library of com-

monly used subroutines such as functions for generating the sine or
th

cosine of an angle, determining the square root or n root of a num-

ber, etc. These routines are written in MYSTIC and are as follows:

AOPB Number

and Date

FFO01--611015

FO02-- 611015

F003--611015

FOO4-611015

Function Name

Sine-Cosine

Arc-sine, Arc-Coslne,

Square Root

Square Root

Memory Print, Output

Scale

Function Objective and Remarks

Computes sine at entrance K + i.

Computes cosine at sine entrance

+4. Argument must be in radi-

arts. Requires 30 storage loca-

tions.

Computes angle in first or

fourth quadrant if entered with

sine. Computes arc sine at

entrance K + I. Computes arc

sine entrance +i0. Resulting

angle is in radians in first or

fourth quadrant for arc sine and

in first or third quadrant for

arc cosine. Extracts square
root at arc sine entrance +40.

Requires 60 storage locations.

Extracts square root. Requires

20 storage locations.

Prints on-line the contents of

memory in five locations per line

in floating point decimal. Nor-

mally located at K09727 output

converter, location K09748, it

takes floating-point number and

exponent from one location and

places base in specified loca-

tion followed by exponent in

subsequent location. Requires

150 storage locations.

25 February 1966 3-19

AOPBNumber
and Date

F005--611015

F006--611015

F00?--611015

F008--611015

FO09--611015

F010--611015

FOil--611015

F012--611102

Function Name

Nth Root

Position in Ellipse
Orbit Generator (PE)

Brouwer Satellite
Theory Orbit Gen-
erator (Brouwer)

HansenSatellite
Theory Orbit Gen-
erator (H ST)

Gill Method Integra-
tion Orbit Generator
(MCOI)

Arc-Tangent X

Arc-Tangent

Vector Package

Function Objective and Remarks
th

Extracts n root of number.
Argument is followed by N in
subsequent location. Requires
40 storage locations.

NOTE: Routines FO06
through F009
are available
from AOPB.

Computes arc tangent or argu-

ment. Resulting angle is in

radians in first or fourth

quadrant. Requires 25 storage
locations.

Computes arc tangent with proper

quadrant allocation. Arguments
are sine and cosine in consecu-

tive locations. Resulting angle

is in radians. Requires 30

storage spaces.

For vector relocation enter K

+ 1. Compute vector magnitude

at package entrance +lO. Com-

puter vector direction at re-

location entrance +20. Vector

subtraction at relocation en-

trance +40. Dot product at re-

location entrance +50. Cross

product at relocation entrance

+60. Scalar by product reloca-

tion at +75. Argument for this

Droduct is scalar. Arguments

25 February 1966 3-20

AOPB Number

and Date

F012--611102

(Cont'd)

F013--611102

F014--611102

F015--611102

F016--611102

F017--611102

F018--611102

F019--611102

Function Name

Vector Package

(Cont'd)

Quadrant Determina-

tion

Matrix Multiplication

Integer Converter

Natural Log

Exponential

Degrees, Minutes,

Seconds to Radians

Alphabetic Sign,

Degrees, Minutes,

Seconds to Radians

Function Objective and Remarks

for all others call for vector

in these successive locations.

Entire package requires storage

locations.

Computes angle with proper _lad.-

rant allocation. Arguments are

sine and cosine in successive

locations. Resulting angle is

in radians. Requires 25 storage

locations.

Multiplies first matrix by

second. Arguments are in conse-

c'ttive locations. Elements of

product matrix are stored in

same manner. Requires 35 stor-

age locations.

Converts floating-point number

to integer and fractional parts

in consecutive locations. Re-

quires 20 storage locations.

Computes the natural logarithm
of the absolute value of P. Re-

quires 40 storage locations.

Computes E to the X for value of

X. Requires 30 storage loca-

tions.

Converts degrees, minutes, and

seconds to radians. Arguments

must be positive in three con-

secutive locations. Requires

15 storage locations.

Converts alpha sign, degrees,

minutes, seconds, fractions of
seconds to radians. Will con-

vert positive or negative de-

grees. Argument must be in

three consecutive locations,

that is. first location a sign

25 February 1966 3-21

AOPB Number

and Date Function Name

F019--611102

(Cont'd)

F020--611102

F021--611102

F022--6ii102

FO23--6111Ce

F024--611102

Alphabetic Sign,

Degrees, Minutes,

Seconds to Radians

(Cont'd)

Hours, Minutes,
Seconds to Radians

Hours, Minutes,

Seconds to Seconds

Day Count

Date

Observation Day

Function Objective and Remarks

sign and the second in degrees;

third in minutes, and seconds,

and fractions of seconds (capa-

ble of handling three decimals).

Requires 25 storage locations.

Converts hours, minutes_ seconds

to radians. Argument in three

consecutive locations. Requires

15 storage locations.

Converts hour, minutes, seconds

to seconds. Argument in three

consecutive locations. Requires
lO storage locations.

Converts year, month, and day to

number of days from Jan. 1 of

given year through given date.

Arguments in three consecutive

locations. Requires 35 storage
locations.

Converts year and day count

(number of days from Jan. I of

given year through given date)

to year, month, and day. Argu-

ments are in two consecutive

locations. Requires 50 storage
locations.

Converts year of reference, day

count (number of days from Jan.

1 of given year through day of

reference), observation year,

month, day to number of days

from reference date through ob-

servation date. Arguments must

be in five consecutive loca-

tions. Requires 20 storage lo-
cations.

25 February 1966 3-22

AOPBNumber
and Date

F025-611102

F026--611102

F027--611102

F028-611102

F029-611102

F030--611102

Function Name

Julian Days--
Secondsto Vanguard
Units of Time

Julian Days--
Secondsto Julian
Days, Hours, Minutes,
Seconds

Azimuth Elevation
to L, M, N

Hours Angle and
Declination to
L, M, N

Right Ascensionj
Declination to
L, M, N

Header Load

Function Objective and Remarks

Converts Julian days and seconds
to Vanguard units of time. Ar-
guments must be in two successive
locations. Vanguard units of
time are based on 1 VUT= 806.832
seconds. Requires 15 storage
locations.

Converts Julian days and seconds
to Julian days, hours, minutes,
and seconds. Arguments are in
three successive locations; the
third location contains the
rounding factor. Requires 20
storage locations.

Converts azimuth and elevation to
direction cosines L, M, and H.
Argument in radians are in suc-
cessive locations. Requires 15
storage locations.

Converts hour angle, declination
and Phl to direction cosines L,
M, H. Arguments in Radians are
in three successive locations.
Requires 25 storage locations.

Converts universal time, right
ascension, declination, right
ascension meansun, stations
longitude, and station latitude
to direction cosines L, M, N.
Arguments in radians in six con-
secutive locations. Requires 25
storage locations.

Loads header data from card of
argument equals zero, or from
tape argument not equal to zero
into 14 specified locations.
Requires storage locations.

25 February 1966 3-23

AOPB Number

and Date

F031--611102

F032--611102

F033--611102

F034--611102

F035--611102

Function Name

Satellite Identifi-

cation Load

Sat_,llite Identifi-

cation Load and

Print

Run Identification

Load and Print

Station Data Load

Station Data

Search

Function Objective and Remarks

Loads satellite identification

data from card if argument

equals zero and from tape if ar-

gument does not equal to zero

into nine consecutive storage

locations. Requires 30 storage
locations.

Loads and prints on-line satel-
lite identification data. If

initial argument equals zero, it

loads a card; if argument does

not equal to zero, it loads from

tape. If second argument is not

equal to zero, it punches a

card; ifequal to zero, no card

is output. If fourth argument

is not equal to zero, it writes

on tape B1; if equal to zero, no

tape is output. Data is always

printed on-line. Requires 25

storage locations.

Loads run identification data

into specified locations and

prints on-line run identification

information. Requires 75
storage locations.

Loads station data into speci-

fied locations (allow six loca-
tions for each station data

item). Requires 40 storage
locations.

Searches table for given station

name and extracts data. Argu-
ment Z equals initial location

of table. First two output lo-
cations contain station names

(must be supplied); allow four

additional consecutive locations

for extracted data. If station

name being searched for is not in

table, zeroes will be placed in

four locations. Requires 20

storage locations.

25 February 1966 3-24

AOPB Number

and Date

F036--611102

F037°-611102

F038--6_1102

F039--611102

Function Name

Ionosphere

Data Load

Ionosphere
Data Search

Optical Station

Number and Corres-

ponding Code Load

Optical _ta
Load

Function Objective and Remrks

Loads ionosphere data into

specified locations (allow 15

locations for each item). If

argument equals zero, it loads

cards. If argument does not

equal to zero, it reads from

tape. A blank card or record

signals end of data. One word

of 99999999 is stored to signal

end of table. Requires 45

storage locations.

Searches table for station num-

ber and extracts _ata. Argu-

ment Z indicates initial loca-

tion of table. First output

location contains station number

(must be supplied). Allow 20

additional consecutive locations

for extracted Inforn_tion. Re-

quires 30 storage locations.

Loads Optical station numbers

and corresponding codes (names)

into table. If argument equals

zer% load cards. If argument

does not equal to zero_ read

from tape. Blanks indicate e_d

data and zeroes are stored in

table. Requires 50 storage

locations.

Loads optical data into table.

If argument equals zero, loads

cards; and if argument does not

equal to zero, it reads from

tape. Blank indicates end of

data and zeroes are placed at

end of table. Requires 55 stor-

age locations.

25 February 1966 3-25

AOPBNumber
and Date

F040--611102

F041--611102

F042--611102

Function Name

Refined Optical

Data Load

Right Ascension

Mean Sun Data

Rig_Ascension Mean

Sun Data Search

F043--611102

F044--611102

F045--611102

F047--611102

F048--611102

Weight = (F, A,

B, SD, SD*)

Heun Method

Integration

Angle Compati-

bility Package

Angle Reducer

Angle Reducer

Function Objective and Remarks

Loads refined optical data into

table. If argument equals zero,

it loads cards. If argument

does not equal zero, it reads

from tape. Blank indicates end

of data and zeroes are placed

at end of table. Requires 55

storage locations.

Loads table with right angle

mean sum data. If argument is

zero, it loads cards; and if ar-

gument is not zero, it reads

from tape. Blank indicates end

of data and zeroes are olaced at

end of table. Requires 40 stor-

age locations.

Searches table for desired right

angle mean sun. Argument Z

equals initial location of table,

and first three locations of out-

put, year, month 3 day of desired

R.A.M.S. rams will be in radians

If search is successful, it

places word 99999999 in output

location. Requires 20 storage

locations.

NOTE : Routines F043

and F044 are

available from

AOPB.

Consists of angle relocation,

subtraction and reducer, as

well as scalar multiplication.

Places angle between 0 and 2 PI.

Places angle between - 2 PI and
+ 2 PI.

25 February 1966 3-26

AOPBNumber
and Date

F049--611102

F050--611102

F051--611102

F052--611102

F053--611102

F054--620308

F055--620308

F056

F057--620724

F058--620724

F059--611015

F060--630215

F061--630215

Function Name

Range Rate

Absolute Value

Drag Data

Observation Load

Ionosphere Refraction

Matrix Inversion

Word Load

Numerical Integration

Position Partial

Derivatives

Kepler (Revised)

Geodetic Latitude

and Height to Geo-

centric Latitude

and Radius Vector

Input Converter

Output Constants

for D.C.

Output Constants

for S.D.

Function Objective and Remarks

NOTE: Routines F049

through F052

are available

from AOPB.

Performs matrix inversion.

Argument consists of number of

ro_in matrix to be inverted,

number of columns, and elements

of matrix by rows (in consecu-

tive locations). Inverse is

stored by rows in locations

occupied by original matrix.

Requires storage locations.

Substitutes new value for value

currently in storage location.

Onecard for each value to be

superseded. Blank card indi-
cates end.

NOTE : Routines F056

through F061

are available

from AOPB.

25 February 1966 3-'°7

AOPB Number

and Date

F062--630315

F063--630315

F064--601015

F065--601015

F066--601015

F067--601015

F068--621015

F069--611015

F070--600615

F071--630703

F072--611015

FO73--610130

F074--611015

Function Name

Interval Core Dump

Interval Core Dump
Print

Square Root
Matrix Solution

Fitting Function
Partial

Matrix Normalizer

Matrix Clear

Sub-Satellite

Point and Height

Round and Scale

Lunear Equations
Solutions

BCD Output Plot

Sunlight Determina-
tion

Element Load

(Conversion of
Elements)

GSFC Elements Print

Function 0b_ective and Remarks

NOTE: Routines F06?

through F07_

are available
from AOPB.

29 April 1966 4-i

CONTENTS

CHAPTER 4 EXEC II PROCESSOR--II07

_ragraph

4.1

4.2

page

EXEC II PROCESSOR--ll07 SYSTEM DESCRIPTION 4-1

4 .i .i

4.1.2
4.1.3

4.1.4
4.1.5

SYSTEM STRUCTURE 4-2

EXEC II 1107-1108 CONFIGURATION DIFFERENCES 4-3

MACHINE CONFIGURATION 4-6

SYSTEM TAPE MAINTENANCE 4-7

ERROR REPORTING 4-7

DETAILED PROCEDURES 4-8

4.2 .i

4.2.2

C01TI_ROL_RDS_RMATA_USAGE

4.2.1.1

4.2.1.2

4.2.1.3

4.2.1.4

4.2.1.5

..... 4-9
System Control Card Description 4-10

Card Control Control-Card Description . 4-16

Processor Call Control-Card

Description 4-18

Allocator Control Control-Card

Description 4-21

Programming Procedures 4-23

PROGRAMMING AIDS 4-23
4.2.2.1

4.2.2.2

4.2.2. 3
4.2.2.4

4.2.2.5

4.2.2.6

4.2.2.7

4.2.2.8

4.2.2.9

Debugging 4-24

1107 Item Advance Routines 4-26

i107 Analyzer 4-27

ll07 Editing Routine 4-27

Save and Restore Routine 4-27

Data Generator Routine 4-28

Diagnostic Trace (SNOOPY) 4-28

Label Check Routine 4-28

Trigonometric Functions 4-28

29 April 1966 4-ii

Paragraph

4.3

CONTENTS (Cont'd)

Pag___e

4.2.2 .i0

4.2.2 .ii

4.2.2.12

4.2.2.z3
4.2.2.14

4.2.2 .z5
4.2.2.16
4.2.2.17

4.2.2.18
4.2.2.19
4.2.2.20

Trace Routines 4-29

SETEOF 4-29

S-C 4020 Package 4-29

MOVER 4-29

TACE 4-30
JFACTO 4-30

Tape Transfer Subroutine 4-30

TUTIL 4-31

PSWTCH 4-31

CalComp • . . . 4-31
Standard FORTRAN I/O Table'for'Univac

1107/1108 EXEC II System 4-32

OPERATING PROCEDURES 4-34

4.3.1

4.3.2

4.3.3

4.3.4

TAPE BOOTSTRAP ROUTINE 4-34

DRUM BOOTSTRAP ROUTINE 4-34

 sic KE -INs(OPERATORAC IONS)I..... 4-34
4.3.3.1 E and X Key-Ins 4-34

4.3.3.2 D and T Key-Ins 4-35

4.3.3.3 W Key-In 4-35

4.3.3.4 S Key-In 4-35

4.3.3.5 LF Key-In 4-35

4.3.3.6 A Key-In 4-35

SYSTEM KEY-INS FOR INPUT/OUTPUT CONTROL 4-35

4.3.4.1 The Card Reader 4-36

4.3.4.2 The Card Punch 4-36

4.3.4.3 Magnetic Tape 4-36
SYSTEM KEY-INS FOR SYMBIONT CONTROL 4-36

TYPEWRITER MESSAGES PRODUCED BY TEE MONITOR 4-36

BIBLIOGRAPHY 4-37

AUXILIARY TAPE CONTENTS 4-39

AUXILIARY LIBRARY DECK SET 4-39

FILE 2 (Independent Executable Programs i 4-40

4.5.2.1 CULL 4-40
4.5.2.2 FORTRAN II to FORTRAN IV--

Translator (LIFT) 4-41

4.5.2.3 ll07 FAP Translator 4-42

4.5.2.4 Linear Programming 4-43

29 April 1966 4-iii

Paragraph

4.6

CONTENTS (Cont 'd)

UTILITY ROUTINES 4-44

4.6.1

4.6.2

i107 UTILITY PROGRAMS 4-44

4.6.1.1 Tape Copy 4-44

4.6.1.2 Tape Print 4-45

1401 UTILITY PROGRAMS 4-47

4.6.2.1 Univac llOT Fieldata Code Convention

in IBM/BCD No. 55 4-47

4.6.2.2 1401 Program (No. 56) to Interpret

and Print ll07, . PR Tapes 4-47

4 48ASSEMBLY AND EXECUTION FROM TAPE

CODING SHEETS 4-50

Fi6ure

4-1

4-2

4-3
4-4
4-5
4-6
4-7
4-8

4-9
4-10

4-11

ILLUSTRATIONS

Flow Diagram of 1107 SLEUTH II 4-5

System Control Cards Summary 4-10

Card Control Control-Card Summary 4-16

Processor Call Control-Card Summary 4-18

Allocator Control Card Summary 4-21

Sample Auxiliary Library Tape Setup 4-39

Sample CULL 4-40

Sample FORTRAN II to FORTRAN IV--Translator 4-41

Sample ll07 FAP Translator 4-42

Sample Linear Programming 4-43

Assembly in SLEUTH II Programning Form 4-51

Table

TABLE

Major Computer Equipment . . . 4-6

Standard FORTRAN I/0 Table "fL UniAc 1107/i108 KX_C "II ." . . . 4-33

29 April 1966 4-1

CHAPTER 4

EXEC II PR0CESSOR--II07

4.1 SYSTEM DESCRIPTION

This chapter describes the EXEC II System for the Univac ii07. The

EXEC II System uses the SLEUTH II (S_ymbolic Language for the Univac
ll07 THin Film Computer) assembler and the F_RTRAN c--ompiler.

The Univac ll07 is the solld-state successor to the vacuum-tube 1105

and llO3 scientific systems. There is no program compatibility be-

tween the llO7 and its predecessors. However, programs written for

the ll07 computer can be used interchangeably with its successor,

the ll08 computer. See Paragraph 4.1.2 for configuration differences.

Although straightforward programming of the Univac ii07 is not unusu-

ally complex, it does take a seasoned programmer to be able to take

full advantage of the powerful optional elements offered in most

instructions.

The EXEC II System is an operating system designed to monitor the

compilation and execution of programs, maximize utilization of avail-

able hardware, and minimize operator intervention. The system utilizes

an FH-880Magnetic Drum as a high capacity buffer store to keep the

card readers, punches, and printers fully occupied and as a fast access

auxiliary store for program segments. An integrated set of diagnostic

aids and library maintenance facilities is included.

29 April 1966 4-2

4.I .i SYSTEMSTRUCTURE

The EXECII Systemprocesses Jobs by meansof control cards. In the
simplest case, the input to the system ccuslsts of a RUNcontrol card,
a program deck, and source data cards. Various other control cards
are used to punctuate this input. In general, a single run can con-
struct _rograms from one or more source language processors (e.g.,
FORTRAN),previously compiled subprograms, and library retrievals;
execute these programs (with data input cards if required); and pro-
duce a diagnostic output for debugging purposes. An inverted capital
Greek delta V in column 1 of the card (which consists of a 7-8 punch)
identifies a control card. See Paragraph 4.2.1 for detailed speci-
fications as to the form and content of these control cards.

User programs in the Ii07 Monitor Systemare controlled primarily by
meansof a card deck. The primary control exercised by the operator
over the Monitor System is by meansof unsolicited key-lns (keys on
the operator console). Thesekey-lns are used to terminate the pro-
gram, to cause the system to continue after having been delayed, to
force a wait condition, etc. Symblonts, multiprogrammed routines,
receive all of their control through the operator's keyboard.

The flow diagram (Figure 4-1) illustrates the various functional com-
ponents of SLEUTHII and the paths of control between them. The first
loading of program instructions is accomplished by using the initial
load bootstrap routine (EXECII Load Tape (COSM)). The first 22_ ad-
dresses in core storage are reserved for this bootstrap routine which
serves to bring in the remainder of the resident and various other
parts of the system. The bootstrap routine also provides a simple
card load routine, a panic dump(simple dumproutine), and a method
of patching the resident system prior to wrlting it to drum.

At each bootstrap from tape, a short routine is executed which makes
a simple check of the hardware.

Tape assignments within SLEUTHII are entirely at the option of the
programmerand, for production work, the selection of the tape unit
to be used for a particular reel is left to the discretion of the
operator. The assignment of multi-reel files is accomplished through
the use of an operational label.

29 April 1966 4-3

4.1.2 EXEC II 1107-1108 CONFIGURATION DIFFERENCES

Univac 1108 jobs are sent to the more available computer unless the

programmer states a particular machine is to be used. The ll08 EXEC

II is quite similar to ll07 EXEC II, and most programs should run

under both systems with no change. There are, however, several dif-

ferences between EXEC II on the ll07 and ll08. These are discussed

below. If any others are detected, programmers should contact one

of the system programmers. The configuration of the ll08 is as

follows:

i) Channel 0--6 FH432 drums; Channel 1--one FASTRAND II unit;

Channels 2, 3, and 12--VIIIC tape drives, 4 to a channel;

Channel 13--1004 card reader and printer; Channel 14--1004

card reader, punch, and printer; Channel 15--console.

2) As on the 1107, character-count errors on tape input may be

ignored by use of the TACE$ routine. However, the last word

of such records is handled differently. On the ll07, the re-

mainder of the last word is filled with the number of charac-

ters read. On the ll08, the remainder of the word is zero

filled, and the character count is not available. For example,

if we are reading a record of 8 characters, the second word

of the buffer would appear as xx2222 on the ll07 and xx_

on the i108 (where xx are the last 2 characters of the record).

3) The mnemonic dump capability has had to be deleted, at least

temporarily. Any requests for mnemonic dumps will be honored

with octal dumps.

4) The resident of the 1108 EXEC II System takes up 12K, where-

as for the ll07 it takes up only 8K. Since the total avail-

able core space on both machines is the same, this means that

some large programs may have to be pared down to run on the

current ll08 EXEC II System. EXEC VIII will be a 12K system,
also.

5) On the VIIIC tape units, end-of-files will be read into the

first word of the input buffer. The end-of-file will appear

as an octal 17 in the leftmost six bits. The end-of-file will

be recognized as such, and control will be transferred to

whatever end-of-file routines are used by the programmer. The

remainder of the input buffer will not be destroyed.

6) The VlllC tape drives have three densities: 200 (L),

556 (H), and 800 (X) bits per inch.

29 April 1966 4-4

7) The blank specifications field on the PMDcard will not be
honored. The programs or areas of core desired to be dumped
must be stated explicitly. This modification will probably
be added to the ll07 at a later date.

8) Any parity error on a i- or 2-word tape record will be treated
as noise during a read and will be automatically disregarded.

9) The Trace Modedoes not exist on the 1108, thus any routines
using the Trace Modewill not execute. Users of the TRACE
routine will be returned to their programs immediately upon
attempted execution of any of the TRACEentry points (TRC,
TRC$,etc.).

Anyone expecting to continue coding on the ll08 should remember, how-
ever, that the EXECII is only a temporary expedient; and it will
eventually be replaced by EXECVIIIj which will be considerably
different.

9

29 April 1966 4-5

hl

Z
o
I-
,,(
O

n 0
Zl, .J
hl 0 J

,<

Z
0

I-

zI"_)° I

Z
0

I-

0 0

_o

• , n."

)i:

J-bX

E
hi
J
m
:E
i,i

(n

olncl
E bJ Z
n ZbJ

0

Zt-
OZ

om

H
I-4

r.o

b-
O
P4

O

I

@

t_
.H

r_

29 April 1966 4-6

4 .I.3 MACHINE CONFIGURATION

The programmer using the Goddard Space Flight Center computer com-
plex has a vast quantity of data processing equipment at his disposal.

The EXEC II System operates on two of these large scale computers. A

list of this equipment is given in Table 4-1.

Table 4-1. Major Computer Equipment

Magnetic No] of

Bldg. Computer Memory Tape
Loc. Facility Size Units

II07G 65K

II08H* 65K

(36-
bit

words)

14

14

24

12

_ |

Line

Printer Drum Channel

i 2

2 6

i m

Data Card

Reader

16 1

16 2

Card

Punch

1

1

1108 also has available a FASTRAND II random access mass storage
device.

29 April 1966 4m7

4.1.4

4.1.5

SYSTEM TAPE MAINTENANCE

The Programming Methods Section (PMS) of the Data Systems Division

has primary responsibility for maintaining the EXEC II System master

tape. Tape revisions or updating occur periodically as a result of

one or more of the following conditions: i) new version or signifi-

cant corrections issued by Univac; 2) major changes originating from

GSFC programmers; and 3) catastrophic errors requiring the immediate

issuance of new tape.

In certain cases, when errors are of a minor consequence or unique

to a particular application and i_nediate release of a new master

tape is not warranted, the PMS provides binary decks to circumvent

the error condition. With the release of new master tapes, the decks

are subsequently discarded by the programmer.

ERROR REPORTING

The PMS has the responsibility of maintaining the EXEC II System.

Any questions regarding system utilization and system discrepancies

should be directed to PMS personnel. The current method of report-

ing system discrepancies verbally is expeditious. However, it is

recommended that the Systems Discrepancy Report (see Form 1-1., Chap-

ter l) be used for submittal to the PMS coordinator. In this way,

a current file of all discrepancies will be maintained along with the

corrective actions taken. A copy of the Discrepancy Form will be

available in the _ coordinating office (Room 127, Building 3) and

in the dispatcher's office (Buildings 3 and 14). Programmers are re-

quired to periodically check the System Status Report (see Form 1-2.,

Chapter l) to insure satisfactory operational performance from the

system used.

29 April 1966 4-8

4.2 DETAILED PROCEDURES

This section includes several illustrations showing job deck composi-

tion for a number of typical runs; presents a description of the con-

trol cards and their use; and offers means by which to use the system

effectively.

The Master Space Character, V, (which consists of a 7-8 punch) in

Column 1 of the card identifies a control card. (This should not be

confused with the blank space.) Options, if desired, are noted by

a string of letters and are punched beginning in Column 2 of the con-

trol card. A string of option letters is terminated by a blank Col-

umn. Column 2 must be blank if no options are specified. The control

card mnemonic appears next on the card. These mnemonics consist of

three letters, and they must be one of the set of 1T as described in

this paragraph. A string of one or more blanks must precede the mne-

monic. In some cases, the mnemonic may be followed by a comma and

then a single character. If this is so, a blank must follow that

character; otherwise, a blank must follow the mnemonic.

The remainder of the control card contains specifications for the sys-

tem routine involved. They are again preceded by a string of one or

more blanks. Since the specification portion varies considerably from

one control card to another, a general discussion is appropriate.

In summary, a control card has the form:

Voptions xxx, specifications

where options represent the option letter string; xxx, the control

card mnemonic; _, a single character; and specifications, the speci-

fication portion.

The E0F or FIN control cards used by the card input system are inter-

preted at interrupt time, rendering the free form described above _m-

practical. These two cards must be of the form:

Column 1 V

Column 2 blank

Column 3, 4, 5 EOF or FIN

Column 6 blank

If a malformed control card is encountered, the card itself is printed,

followed by the message:

April 29, 1966 4-9

4.2 .i

ABOVE CONTROL CARD IN ERROR--IGNORED

In the case of premature termination of a run, due to an error, any

control card other than a PMD (see Paragraph 4.2.1.1 (4)) will pro-

duce the meassage:

REMAINING CONTROL CARDS IGNORED

If the system is expecting a control card, but encounters one or more

cards not containing a V in Column l, the following message is printed:

DATA CARDS ENCOUNTERED BY SYSTEM--IGNORED.

CONTROL CARDS FORMAT AND USAGE

This paragraph presents in detail the description of the control cards

that exercise control over the EXEC II System. The user controls and

directs the processsiug of his job by inserting the proper control

cards in the Job deck, thereby directing the operating system to per-

form any one of several operations.

There are 19 control cards that fall into four categories, namely,

System Control, Processor Control, Allocator Control, and Card Input

Control. These control cards are detailed in Paragraphs 4.2.1.1

through 4.2.1.4.

29 April 1966 4-10

4.2 .i .I System Control Card Description

The system control cards are summarized in Figure 4-2. A detailed

description of the control cards and their use is provided.

SEE

PAR. 4.2.1.1

(1)

(2)

(3)

(4)

(6)

(z)

(8)

MNEMONIC

RUN

ASG

MSG

PMD

ELT

EDG

TPR

DPR

APPLICATION

To initiate each computer run.

To cause assignment of magnetic

tapes

To type message to operator

To cause memory printout after

execution

To introduce an element into the

program complex file from cards

To give heading information for

printer output from the run

To specify which I/O device--magnetic

drum or tape--is to be used to store

intermediate Fieldata images for the

printer symbiont.

To route printer output to drum

storage.

OPTIONS

(priority)

ACEFHKLORX

HN

ABCDEIQX

None

NP

S

None

Figure 4-2. System Control Cards Summary

°

29 April 1966 4-11

An individual description of the System Control Cards is as follows:

(1) RUN Control Card: (Variable Field Format)

i 8O

RUN identification, account, running time, print

output, print output channel, punch output channel

V

A RUN control card precedes each Job to'be performed. If the system

encounters a control card other than the expected run control card,

it prints the following message:

RUN CARD MISSING--DECK NOT ACCEPTED

NOTE: Priority which may appear on a run card should not be used by

the programmer. Priority will be assigned by the dispatcher.

The identification field should contain the installation's conventional

run identification. Both it and the account field may consist of up

to six characters taken from the set A ... Z, 1 ... 9, +, =,., $

Blanks are illegal.

The running time field is an estimation of the running time in minutes

for the problem. Should this time be exceeded, the operator will be

informed and the run continued. It is the operator's responsibility

to terminate the run. The print output field is an estimation of the

print output in pages required for the problem. Should this estima-

tion be exceeded, the operator should be informed and the run com-

pleted. It is the operator's responsibility to terminate the run when

estimated running time or print out is exceeded. The running time

field may be omitted, in which case, the system assumes a maximum time

of five minutes; likewise, the output field may be omitted and a maxi-

mum of 50 pages will be assumed.

(2) ASG Control Card: (Variable Field Format)

1 8O

V ASG assignment, assignment, ...

The ASG control card will associate a logical unit designation with

a scratch tape or with an operational label. The option filedmay

contain the following letters (in any order):

A--accepts character count errors (ll08 only)

H--density set high (556 bpi)

L--density set low (200 bpi)

X--density set to 556 bpi (l_IOT) or 800 bpi (ll08)

29 April 1966 4-12

If no density setting is indicated, it will be assumed
to be high
O--parity set odd
E--parity set even
If no parity setting is indicated, it will be assumed
to be odd
R--rewind
C,K--causes automatic Fieldata to BCDconversion on
output and BCDto Fieldata conversion on input (C is
software, K is hardware)
F--turns BCDconversion off

Any option letter appearing on an ASGcontrol card will apply to all
assignments madeon that card. An attempt to assign the samelogical
designation more than once will produce a messageon the printer, but
will accept the last assignment made. No harm results from assigning
more than one logical designation to the sameoperational label. Any
numberof ASGcontrol cards mayappear in a program; their effect is
cumulative.

It is sometimes desirable for the user to specify absolute tape as-
signments channel/unit (c/u). This feature eliminates the need for
the A key-in and "MOUNT"messagebut requires the operator to mount
the tapes where and when specified by the user.
signments are made, the ASGcard takes the forms

v ASG c/u,c/u,...
VOPTIONS ASG assignment

_OPTIONS ASG c/u,c/u,.., assignment

When absolute as-

(TypeI)
(Typen)
(TypeIn)

A card of Type I immediately followed by a card of Type II produces

the same results as a card of Type III. Only one "assignment" field

is allowed per card. A maximum of l0 cards of Type I collectively,

specifying a maximum of l0 channelu/_it pairs, can be grouped to-

gether. Cards of Type I must immediately precede one card of Type

II. The "options" field is meaningful only on those cards contain-

ing an "assignment" field. A space must follow the last unit number

on cards of Types I and III.

All tapes at the end of a Job are automatically rewound, except when

a dollar sign ($) is encountered as the last character of a tape label.

(3) MSG Control Card: (Variable Field Format)

''l
8O

H MSG message to be typed

The MSG control card is used to type a message to the operator. The

29 April 1966 4-13

typing will be prefaced by the line MSGand will commencewith the
first non-blank character of the specifications field. If the op-
tions filed contain an H (as in the example), the operator will be
given the opportunity to execute or scratch the run by causing a
wait loop Typing maybe suppressed (resulting in the printing of
the MSGcontrol card on the printer only) by an N option. In this
case, the H option is not effective.

(4) PMD Control Card: (Variable Field Format)

l
,,u_

C PMD specifications

_0

The PMD (Post-MortemDump) c0ntrol card may be used to dump core

memory following the execution of an object program. Dumps may be

made of segments, elements, or specified parts of elements, as long

as they were currently in the memory at the time the routine was

terminated. Several options are available for output formatting,

and core areas to be dumped. The option C (in the example) will cause

a dump of the words that were changed during the execution of the al-

located program for the area of core prescribed by the PMD card. In

the event no DUMP is available, the message

NO PROGRAM EXECUTED--NO DUMP TAKE

is printed and the PMD card is ignored.

The option field may contain the following letters:

E--causes the PMD card to be processed only when the previous

routine terminated at systems error exit MERR$.

C--causes a dump of the words that were changed during the

execution of the allocated program for the area of core

prescribed by the PMD card.

B--causes, after processing the rest of the PMD card, an

octal dump of all of blank common storage area. If used

with the C option, it will be ignored. (Changed word

dumps of blank common may be taken when requested as a lo-

cation counter under the blank option (See UNIVAC ll07

LIBRARY II, Section 8.2.2).

Q--used for absolute dumps of arbitrary areas of core.

M--obtains a mnemonic Post Mortem Dump. This option will

be overridden if any format other than 8014 is specified

or if a Change Word Dump is requested.

29 April 1966 4-14

(5) ELT Control Card: (Variable Field Format)

i 2 8O

ELT name/version (flag), type, date time

The ELT control card introduces an element into the current program

complex file from punched cards. The ELT is always followed by the

cards containing the element. Name/version is the name or name and

version to be associated with the element. The field type gives the

type number of the element. If omitted, Type 1 (source language is

assumed. The date and time fields identify when the element was cre-

ated or last altered. The date is punched as a slx-digit decimal num-

ber of the form yymmdd, and the time is punched as the decimal number

of seconds from midnight. If these fields are omitted when an ELT is

read, the current date and time will be entered into theelement table.

When an element is punched by a processor or by CUR; it is always pre-

ceded by a suitable ELT control card. Such decks can simply become

part of the input to subsequent runs. The complex utility routine

(see UNIVAC ll07 EXEC II Pro6rammer's Guide U-3671) is called into

play when an ELT card is encountered. No option letters are associ-
ated with an ELT control card.

(6) HDG Control Card: (Variable Field Format)

1 2 8O

V N KDG heading line (columns 13-72)

The HDG control card is used to give heading information for printer

output from the run. The Heading control card must precede any Pro-

cessor control cards in the run. A page number and current date ap-

pears to the right of the printed heading. Options are:

N--Turn off page heading on print output

P--Reset page count

(7) TPR Control Card: (Variable Field Format)

8O

TPR label

The 'I'FMcontrol cards may be used by the programmer to specify which

I/0 device--printer or magnetic tape--is to be used as the standard

output device. Since these cards override Print Cooperative Key-Ins,
they must be used with caution.

29 April 1966 4-15

The option may be an S (as in the example) to permit switching to

the next tape in the string of assigned .PR tapes at the beginning
of the run in which the TPR card is encountered. The label field

may contain up to six alphanumeric characters, if desired. The first

word of each tape block contains this label. The TPR card must im-

mediately follow the RUN card. .PR tapes may be printed on the ll07
and 1401.

See Paragraph 4.5.2.2 for further information on off-line print routines.

(8) DPR Control Card: (Variable Field Format)
J,

w DPR

The DPR control card is used to route printer output to drum storage.

There are no options or labels.

29 April 1966 4-16

4.2 .I .2

SEE

Card Control Control-Card Description

The card-control control cards are summarized in Figure 4-3. A de-

tailed description of the control cards and their use is provided.

PAR. 4.2.1.2

(1)

(2)

MNEMONIC APPLICATION OPTIONS

NoneE0F

FIN

To punctuate a data check.

To mark the end of a card stream. Not

normally required by the programmer

None

Figure 4-3. Card Control Control-Card Summary

29 April 1966 4-17

An individual description of the Control Card control-cards is as
follows:

(1)
I

_7

E0F Control Card:

2 3 4 5 6 7

E 0 F

(Fixed Field Format)

8O

The E0F control rd is used to punctuate a data check. Column 7

may contain any character, and Columns 8 through 80 are ignored.

There are no options. On encountering an EOF card, the subroutine

exits to the abnormal return with the character in Column 7 located
in A0.

(2) FIN Control Card : (Fixed Field Format)

1 2 34 5 6 ? 8O

V F I N

The FIN contro rd marks the end of a card stream. It is not nor-

mally required by the programmer. There are no options.

29 April 1966 4-18

4.2.1.3 Processor Call Control-Card Description

The Processor Call Control Cards are summarized in Figure 4-4. A

detailed description of the control cards and their use is provided.

SEE

PAR. 4.2.1.3

(i)

(2)

(3)

(4)

MNEMONIC

ASM

FOR

MAP

PDP

APPLICATION

To call out Assembler

To call the FORTRAN Compiler

To call out the memory allocation

processor

To call out the procedure defini-

tion processor

OPTIONS

_ILNPS%D_Z

_DILNPSTWXZ

IINPSWX

_XLIS

Figure 4-4. Processor Call Control-Card Summary

29 April 1966 4-19

An individual description of the Processor Call control cards is as
follows:

(1) ASM Control Card

v

The ASM control card calls out SLEUTH II assembler. Th'ere are nine

options for Column 2. (See UNIVAC 1107 EXEC II, Section _) Loc

gives the location of the input: omitted, input from cards; *,

input from the complex on drum; an alphabetic character, input from
corresponding logical tape unit. The specification _/v I is the

name or name/verslon source language element, if one exists; n_/v_

-is the name or name/version of the updated source language element,

if one exists. (Yf this field is omitted no updated source language

is placed in the complex.) The _/v s is the name and version to be

applied to the relocatable element code resulting from this process-

ing (if omitted, the relocatable element will have the same name as

that of the updated source language element, and a version name CODE).

Flag is a string of alphabetic characters enclosed in parentheses,

giving the flags to be associated with the newly created relocatable

code (_ this is omitted, the flag associated with the relocatable

code is taken to be all zeros).

(2) FOR Control Card

The FOR control card calls out the FORTRAN compiler. (Same general

rules as in (i).)

(3) MAP Control Card

The MAP control card calls out the memory allocation processor.
(Same general rules as in (1).)

4)

1 2 3 4

PDP Control Card

8O

V PDP, loc nI/vl, _/v,_

The PDP control card calls out the procedure definition processor.

The PDP accepts source language defining SLEUTH II procedures and

builds an element to be included in the program complex file. There

are five options for Column 2. (See UNIVAC ll07 EXEC II, Section V.)

The specification loc indicates whether the element is to be taken

from cards (loc is omitted); from drum (*); or from tape (alphabetic

character referencing the proper tape unit). The nl/vI is the name

and version of the source input element, and may be either a source

language element (type l) or a procedure element (type 7). The

29 April 1966 4-20

n_/v_ is the name and version to be applied to the procedure element

code resulting from this processing (if omitted, the procedure ele-

ment produced by PDP will be entitled nl/CODE).

In the options field of an ASM or FOR card, one or more of the fol-

lowing letters may appear: A, I, L, N, P, S, X, Z. Each of these

letters represents a single option:

A--accept the results of the processing as correct, even

though errors were detected.

I--single space listing without relocation information.

L--produce a complete printed listing.

N--suppress all printing by the processor.

P--punch the resulting relocatable element into cards.

S--punch the (updated) symbolic language in compressed

form. If both P and S are specified, the compressed

symbolic deck will appear first.

X--abort the remainder of the compilation if any errors

are detected by the processor.

Z--suppress the formation of information to be given

the diagnostic system.

Ordinarily, the L and P options will be used. If no P option appears,

no punched deck will be output. If the L option is dropped, a llst-

ing of the symbolic input deck will be output without the correspond-

ing assembly. If the N option is used, no listing will be output un-

less errors are detected in the program.

An additional option letter W will llst all correction cards, if any.

In FORTRAN, the option letter T will return the compilation time.

29 April 1966 4-21

4.2.1.4 Allocator Control Control-Card Description

The Allocator control cards are summarized in Figure 4-5. A detailed

description of the control cards and their use is provided.

The allocator is a system routine which collects subprograms and in-

terconnects them. Cross-reference between these subprograms are re-

solved and relative locations are assigned. Depending on how the

allocator is called, it may go on to produce an absolute program

which is put away on drum. Finally, this absolute program may be
loaded into core and run.

The allocator will also, unless requested otherwise, construct a

group of tables which serves as one of the inputs to the diagnostic

system. If desired, the allocator can work with the output of the

memory allocation processor in order to provide a flexible and so-

phisticated segmentation ability. In the absence of a map, the

allocator assumes that all subprograms and common blocks will occupy

core simultaneously.

Three separate control cards, XQT, ABS, and SCD, result in calling

the allocator. These cards cause, respectively, the allocator to

construct (if necessary) an absolute program and execute it; to con-

struct an absolute program and put it into the user's drum PCF; and

to construct a reloeatable program and put it into the user's drum
PCF.

SEE

PAR. 4.2.1.4

(i)

(2)

(3)

M_EMONIC

XQT

L

ABS

SCD

APPLICATION

To execute a program (including

allocation, if required)

To produce an absolute program

To define a subcomplex

OPTIONS

ACLNXZ

ACLNXZ

ACLNPX

Figure 4-5. Allocator Control Card Summary

29 April 1966 4-22

An individual description of the Allocator control cards is as
follows:

(i) XQT Control Card: (Variable Field Format)

i 8O
l

V XQT, _ name/version,i

The XQT control card is used to execute a program (including allo-

cation if required). The _ is the letter to be used in selecting

elements for the basis of their flags. There are six options for

Column 2. (See UNIVAC ll07_ EXEC II, Section V.) The name/version

is the name or name and version of the program to be executed. The

i, when present, is a decimal integer indicating how many times to

go through the FORTRAN error routine, NERR$, before terminating.

(2) ABS Control Card: (Variable Field Format)

1 80

ABS, _ name/version, name/version

The ABS control card is used to produce an absolute program, as it

does for the XQT control card. In this instance, however, the re-

sulting program will not be executed, but instead will be entered

into the program complex file as an absolute element. The second

name/version field becomes the name of the element.

(3) SCD Control Car_ (Variable Field Format)

1 8O

SCD, _ name/version, name/version

The SCD control card is used to define a subcomplex. This card be-

haves much as does the ABS control card. A relocatable element is

inserted into the complex, rather than an absolute element. To be

useful, a SCD control card will usually require a map. For details,

see UNIVAC ll07 EXEC II, Section VI.

In the options field, one or more of the following letters may appear:

A, C, L, N, X, Z. Each of these represents a single option:

A--accept the results of processing as suitable for

execution even though errors were detected.

C--make the following patches.

L--Produce a complete allocation listing and map.

29 April 1966 4-23

4.2.1.5

4.2.2

N--Produce no allocation listing.

X--abort. Do not execute if errors detected.

Z--suppress the formation of information to be given

the diagnostic system.

The A option will be overridden if the errors are sufficiently serious

to prevent execution. If neither the L nor N option is specified, a

partial listing will be produced. The N option will be overridden if

diagnostics are produced.

Programming Procedures

This paragraph will describe basic programming procedures for the

Univac ll07 computer. For detailed information, consult the UNIVAC

ll07 EXEC II Pro_Fammer's Guide, U-3671, and the Library II Prosram-
mer_'s Guide, U-3672.

To communicate with the 110T monitor system, the following deck set-

up is required:

RUN identification, account, running time, output

Voptions FOR program name

FORTRAN IV source program

Voptions ASM program name

SLEUTH II source program

Voptions XQT program name

Data Cards

E0F

Data Cards

Voptions PMD specification field

FIN

The program name on a FOR or ASM card need not be the same as the
actual name of the routine but is limited to six characters. The

program name on the XQT card is the name of the first program to

be executed, and this name must appear on a FOR, ASM, or ELT card.

If only a compilation is desired, the XQT card is omitted.

The PMD card is discussed under Debugging in Paragraph 4.2.3.2.

PROGRAMMING AIDS

This paragraph presents to the programmer tips and techniques, as

well as precautions to be considered while performing programming

functions. These programming aids should be of help to the program-

mer in his utilization of the EXEC II System.

29 April 1966 4-24

4.2.2.1 Debugging

For programs written in SLEUTH IT, several procedures and programs

are available which will aid the programmer in debugging.

8. In most of the dump procedures, a format must be specified. The

standard formats are:

'M'

'F'

'E'

tit

tAt

T®t

standard octal format plus mnemonics*

(8F14.8) fixed decimal

(8E14.8) floating decimal

(8114) integer

(16A6) alphanumeric

(8®14) octal

*There is no mnemonic dump on the 1108. An octal dump

without mnemonics will be given instead.

Any message up to 120 characters may be produced on the Printer by

use of the XSMESG procedure:

x$ sG k
'diagnostic message '

where k is the number of words in the diagnostic message.

b. A dump of thin film may be produced by the XSFILM procedure:

XSFILM start, length, format

which results in length film locations beginning at film location

start being edited and printed according to format as described

above. Start and length locations may be either symbolic, decimsl,
and/or octal addresses.

c. The X$CORE procedure dumps core memory:

X$CORE start, length, format

which results in length core locations beginning at core location

start being edited and printed according to format as described

above. Start and length locations may be either symbolic, decimal,
and/or octal addresses.

d. The XSDUMPprocedure dumps thin film and core memory:

XSDUMP start, length, format, registers

29 April 1966 4-25

which results in a panel dumpof the current state of the machine,
B, A, and/or R registers and a printout of core memorywhere regis-
ters, printed in octal, are specified by the letters B, A, or R, or
any combination. "length" core locations are dumpedbeginning at
core location "start"and edited and printed according to the format
as described above. If registers are not desired, the field should
be left blank. Start and length locations maybe either symbolic,
decimal, and/or octal addresses.

e. A dumpmaybe specified at the end of the program. This is speci-
fied by the PMDcontrol card:

_optlons PMD specifications

where V is the 7-8 multlpunch.

Options include:

C--changed-word dump

E--dump executed only if program exits through error

B--will cause octal dumpof Blank Common

A--dump of Bank 2 namedin spec. llst*

I--dump of Bank 1 namedin spec. list*

*Only one of these maybe specified in a single PMDcard.

X--if A, D, or I speclfied,dumps everything except that which
is namedin the spec. list.

M--standard mnemonicdump. (Does not work with C option.)**

**There is no mnemonicdumpon the ll08. An octal dumpwith-
out mnemonicswill be given instead.

Specifications include:

_. If no A, D, or I are specified, the spec. list must have
the form:

name, start, length, format

nameis the nameof an element; start is of the form nSm, where
n is an address relative to location counter m; length is the
number of words to be dumpedin format.

_. If A, D, or I are specified, the spec. list must have the
form:

namei, name2, name3 (etc.)

where nameX is an element or segment name.

c. An unconditional dumpgoverned by the specification is given
if there are no options. If there are no options or speci-

fications, no dump will be taken.

29 April 1966 4-26

4.2.2.2

f. PDUMP, FPDUMP, and DUMP take storage dumps as specified by arguments

(A,B,I), restore the condition of the machine, and return to the pro-
gram which called them.

The general form of the PDUMP statement is:

CALL PDUMP (Al, _, A, "'" A n , Bn, In)

where A and B are variable data names indicating limits of core

storage to be dumped. Either A i or B.I may represent upper or lower

limits. Ii is a FORTRAN integer indicating the format desired, as
follows:

I=O

I=l

I=2

I=3

dump in floating point

interpret as decimal integer

dump in octal with mnemonics

If a PDUMP CALL is made with no arguments, the entire user's program

core area is dumped in octal.

If the last format in a string of arguments is omitted, the area of

core between the two specified dump locations will be dumped in octal.

When PDUMP is executed, the machine is restored to its condition upon
entry, and control is returned to the next executable statement. The

storage dumps appear on the printer with other dump output from the job.

1107 Item Advance Routines

The item I/O routines relieve the programmer of the task of item hand-

ling chores when designing a SLEUTH II program. Routines aredesigned

by procedure calls which generate object coding in the user's program.

(1) Input Procedure Files:

Function An0PEN--Open input file n. Routine reads list block,

transfers first item (contains label) to work-storage (item-

_s). Initiates a read of the next block (data) into the input

area (block-storage). (Reads two blocks of data for buffered

option.)

Function AnREAD--Read input item from file An. Transfers current

input item to input working storage (Item-ws). Initiates refill
of the input area (block-storage) after transferring last item.

29 April 1966 4-27

4.2.2.3

4.2.2.4

4.2.2.5

(2) Output Procedure Files :

Function BnOPEN--Open output file Bn. Routine transfers one

item (label) from work storage (item-ws) to the output area

(block-storage) and initiates a write of this block.

Function BnWRIT--Write output item of file Bn. Transfers cur-
rent item from working storage (item-ws) to the output area

(block-storage). Initiates a write of one block when the out-

put area is full.

Function BnCLSE--Close output file Bn. Fills any remaining out-

put area (block-storage) with any specified sentinel, and writes

this block followed by one E0F nmrk. CALL this routine twice in
succession to insure two consecutive EOF marks.

For more informatlon_ contact Mrs. Pat Barnes of the Programming

Methods Section, Advanced Projects Branch, Building 3, Room 1273

Extension 6796.

1107 Analyzer

The programmer should find the object program analyzer very useful in

debugging operations. This routine is in the standard systems library,
and it will analyze a selected area for all cross references (XREF)

within a group of selected areas. Output is an HSP listing, giving

the address an@ instruction of XREF's. Constants that can be recog-

nized as such are edited in octal. Some constants, however, are in-

distinguishable from instructions and will be so edited. For more

information, contact Mrs. Pat Barnes as noted in Paragraph 4.2.2.2.

II07 Editin 6 Routine

This library routine alleviates the programmer of attending to tedious

editing considerations when printing on-line. By describing a printed

_age via a parameter list, the main program need only communicate with

the routine when a line of data is to be printed. All responsibili-

ties for spacing, headers (single or multi-line), page count, and

paper-feeding (PLIES) are assumed by the editing routine. For more

information concerning this, contact Mrs. Pat Barnes as noted in Para-

graph 4.2.2.2.

Save and Restore Routine

The routines to save and restore all A and B registers have been in-

corporated into the system library. For more information, contact

Mrs. Pat Barnes as noted in Paragraph 4.2.2.2.

29 April 1966 4-28

4.2.2.6

4.2.2.7

4.2.2.8

4.2.2.9

Data Generator Routine

This routine can be used to alter data information in core to assist

in realistic program checkout. The data image is assumed to be in

core initially. The data may be _yuamically altered by the program-

mer between calls. For more information, contact Mrs. Pat Barnes as

noted in Paragraph 4.2.2.2.

Diagnostic Trace (SNOOPY)

SNOOPY is a diagnostic library routine designed to assist in program

checkout. SNOOPY will printout film information (as per options)

whenever a successful skip or jump instruction occurs. Calling SNOOPY

results in the location begin address being preserved and a link to

SNOOPYbeing inserted. _Wnen this instruction is executed, SNOOPY

takes control, restores the link, and snoops until end add, where

it returns control.

The programmer may take snapshot dumps at any instruction by coding

a list of dump parameters. The dump will be taken following the exe-

cution of the instruction. The number of such parameter pairs is un-

restricted and is specified bT _ dumps. For information, contact Mrs.

Pat Barnes as noted in Paragraph 4.2.2.2.

Label Check Routine

This routine is developed to provide the programmer with a standard

label checking ability. For more information, contact Mrs. Pat Barnes

as noted in Paragraph 4.2.2.2.

Tri6onometric Functions

For compatibility with the FORTRAN system in use on the IBM TO94's

within the Data Systems Division, the following function subprograms

have been added to NASA UNIVAC ll0T EXEC II Library:

Function ACOSD (y)--computes principal value of Arc Cosine

y in degrees.

Function ASIND (y)--computes principal value of Arc Sine y,

in degrees.

Function ATANGD--(y,x)--for signed inputs y, x computes angle

between 0° and 360 ° whose tangent is y

divided by x.

Function COSD (a)--glves Cosine of input angle expressed in degrees

Function SIND (a)--gives Sine of input angle expressed in degrees

29 April 1966 4-29

Function ATANGR (y,x)--for signed inputs y,x computes radlan

angle between 0 and 2_ whose tangent

is y divided by x.

Function ACOSR (y)--computes principal value of Arc Cosine y,
in radians.

Function ASINR (y)--computes principal value of Arc Sine y,
in radians.

Anyone desiring more information on these routines should be directed

to Mrs. Pat Barnes of the Programming Methods Sectlon, Advanced Pro-

Jects Branch, Building 3, Room]27, Extension 6796.

4.2.R.10 Trace Routines

The trace routine is a blend between a software and hardware trace.

Soft_are components are necessary to allow for restoring register

R3 after a trace interrupt occurs. They also permit establishing
the locations of all executed JMGI/MOJP (which are not provided by

a trace interrupt) and of all instructions performing a skip. The

hardware components of this routine are used solely for detecting

that a jump instruction was executed, for obtaining the address to

which coutrol was to be transferred, and for returning control to

the trace routine. See An Improved Approach to Trace Routines X-
545-65-1153 Goddard Space Flight Center. (No trace routines on ll08.)

4.2.2.11 SETEOF

4.2.2.12

A FORTRAN progr_er may now return to his program upon reaching an

E0F in formatted input. Prior to instituting his read, the program-
mer should

CALL SETEOF ($n)

where n is a statement number in the calling program to which the

programmer wishes to go upon reaching an EOF.

S-C 4020 Packase

The Lockheed S-C 4020 Package is on the system library. There are a

number of GSFC modifications to this package; details are obtainable

from Mrs. Pat Barnes, Programming Methods Section, Advanced ProJects
Branch, Building 3, Room 125, Extension 6796.

4.2.2.13 MOVER

This routine extends the re-read feature of FORTRAN IV.

sequence is

CALL MOVER (X)

Its calling

29 April 1966 4-30

where X is the location of the image which the programmer would like

to process on his next reference to the re-read unit, which is FORTRAN

logical unit 0 in the standard FORTRAN I/0 table. This allows a pro-

grammer to re-read a given set of data at any time in his program,

rather than only immediately after it is read. It should be noted

that any read statement will reset the reference, so that no-read

statements should lie between the CALL to MOVER and the re-read

stat eme nt.

4.2.2.14 TACE

This routine allows FORTRAN programmers to ignore the character-count-

error interrupt (interrupt code 708) on input tapes. Its calling se-

quence is

CALL _CE (nA_)

where ITAPE is the FORTRAN logical unit on which the interrupt is to

be ignored.

4.2.2.15 JFACT0

The following procedure may be called at or near the beginning of the

user's program:

JFACTO name (1) name(2) name (3)

Specifying a name(l) will determine which set of mnemonics is defined

internal to the calling program. These are summarized in Table I of

the 1107 Programmer Note 3, Data Processing Branch, Information Pro-

cessing Division, T&DS.

4.2.2.16 Tape Transfer Subroutine

If a SLEUTH II program wished to reference tape drives by some logi-

cal unit letter designator_, but the tape drives had been previously

assigned to _(=_), those tapes were heretofore unavailable. This

subroutine allows all tape drives associated with _ to be referenced

by 8, and inversely.

The calling sequence

LMJ ll, TXFR_

(where = and 8 are any valid logical unit designators) will attempt

to interchange tapes associated with _ and 8. If transfer is per-

missible, register 12 (A_) is positive upon return to user; if not,

register 12 is negative. Transfer is permissible if all of the

following are met:

29 April 1966 2-31

(i) logical unit designators are valid
(2) no tapes affected by the transfer are assigned to

EXECII proper or the parasites (NOTE: unassigned
tapes and tapes assigned to the user are treated
identically)

(3) the current tape operation has been completed (NOTE:
if an operation is in process, TXFR_will wait for
completion and then perform the interchange)

4.2.2.17 TUTIL

This program provides the user with various tape operations which
are executable at arbitrary points in his run deck. The utility
program is called by the card

VN XQT TUTIL

Following this card is a stream of cards specifying the tape oper-
ations to be performed. This operations card stream is terminated
by any non-EOFcontrol card. For details, see i107 ProgrammerNote
6, obtainable from Mrs. Pat Barnes, Building B, Room125.

4.2.2.18 PSWTCH

There are two methods the programmer may use to determine the state

of an indicated program switch. The first is by the subroutine call

CALL PSWTCH (n, variable name)

where n is a program switch (1 < n < 36) and variable name is a vari-

able which is to receive the in_ege_ value 1 if switch n is off, or

2 if n is on. The second is by the function call

P_TCH (n)

where n is a program switch (i < n < 36) and the function will receive

the integer 1 if switch n is of_, o_ e if n is on. In both cases, if

n has been previously specified or is out of range, the standard

FORTRAN error exit will be taken. See i107 Programmer Note 4, obtain-

able from Mrs. Pat Barnes, Building 3, Room 125.

4.2.2.19 Ca!Com? Routines

(i) cpu.s

CPLOTS must be called before any of the other CalComp routines are

used. It need be called only once. The main purpose of this routine

is to set up a buffer area in which to store the CalComp commands.

29 April 1966 4-32

4.2.2.20

(2) CCP OT

This subroutine will write a tape that is readable by the CalComp

570 Plotter, draw graphs, maps, plots, etc.

(3) SYMBOL

The purpose of this routine is to create commands that will produce

alphabetic characters, numerals, and other selected symbols on the

CalComp 570 Plotter.

(4) PACRAT, PAKRAT, SHIFTY

The purpose of these three routines is to generate input data for

the SYMBOL routine. However, they nmy be found useful for other

purposes. PACRAT packs Fieldata characters stored one to a word,

left-justified, into consecutive locations, such that there are 6

Fieldata characters per word. PAKRAT stores FORTRAN integers one to

a word, left-justified, into consecutive locations, such that there

are six Fieldata characters per word. SHIFT_ shifts a FORTRAN inte-

ger so that the least significant six bits are stored in the left-

most six bits of another word.

Standard FORTRAN I/O Table for Univac ii07/i108 EXEC II System

FORTRAN programs using I/0 devices will automatically call on the

standard I/O table, provided the user has not specified one of his

own. The standard I/0 table is listed in Table 4-2.

29 April 1966 4-33

Table 4-2. Standard FORTRANI/O Table for Univac 1107/1108 EXECII

FORTRANLogical
Unit Number

Specific
I/0 Device

0
i
2
3
4

5
6
7
8

9
i0

ii

12

13
14

15
16

17
18
19
2O
21
22

23
24
25
26
27

28
29
30
31
32
33
34
35
36

Reread Unit

B •

C

D

E

F

G

H

I

J

K

L

M

N

0)Tape
P Units

Q
R

S

T

U

V

W

X

Y

Z

)
w

A

No_ Used

Not Used

Card Reader

Printer

Card Punch

Console

Drum File i*

Drum File 2*

*The standard drum files are both 1600000_ locations long and Drum File 2 se-
quentially follows Drum File 1. On the _ll07, Drum File 1 begins at location

260000008; on the ll08, Drum File 1 begins at location 31000000_.
NOTE: The Card Reader, Printer, and Card Punch are defined as Vunits -1, -2,

and -3, respectively. Programmers writing their own I/0 table should so note.

The entry point for the I/0 table is defined as NTAB$. (NTAB$ is logical unit

0, NTAB$+l is logical unit l, etc.)

29 April 1966 4-34

4.3

4.3.1

4.3.2

4.3.3

4.3.3.1

OPERATING PROCEDURES

The operating procedures are developed here for quick reference.

For details concerning operating instructions which are directed

toward the EXEC II System, see Section 8 of the UNIVAC EXEC II

Programmer's Guide.

TAPE BOOTSTRAP ROUTINE

The EXEC II Load Tape (COSM) has as its second block* a 224-word

Bootstrap Routine which serves to bring in the remainder of the

resident and various other parts of the system. The Bootstrap Rou-

tine also provides a simple card load routine, a panic dump, and a

method of patching the resident system prior to writing it to drum.

DRUM BOOTSTRAP ROUTINE

Once the system has been set up, it may be reinitiated by performing

a manual bootstrap operation from appropriate drum channel. No con-

sole Jump switches are effectual from a drum bootstrap. Whenever the

system has been bootstrapped from either drum or tape, date and time

key-ins should be performed and the real-time clock turned on.** In

addition, the printer forms should be adjusted to print on physical
line one.

BASIC SYSTEM KEY-INS (OPERATOR ACTIONS)

The primary control exercised by the operator over the Monitor System

is by means of system key-ins. A system key-ln is one made that is

not in response to a specific request by the running program. The

first character of key-ins always determines the routine which is to

process the information entered into the computer. What follows this

first character depends on the specific type of key-in.

E and X Key-Ins

System key-ins of E and X are used to terminate the program currently

being run. The E key-in is nornmlly used in situations such as the

program entering a closed loop. An X key-ln is usually used when the

program reaches some impasse, such as a request for a non-existent

tape reel, etc.

*Block I is a hardware test. On the 1108, Block 1 is the boot block and is

20002 words in length.

**Time-Key-In is not necessary on the ll08. My be booted without turning off
RTC.

29 April 1966 4-35

4 -3.3.2

4.3.3.3

4.3.3.4

4.3.3.5

4.3.3.6

4.3.4

D and T Key-Ins

The D key-in is used to enter the current date into the system. The

T key-in is used to set the system clock to the current time of day.

The date and time key-ins must be used each time the system is brought

from tape or drum.*

W Key-In

The W key-in is used only to cause a delay in the user's program; any

parasite operation continues.

S Key-In

The S key-in is used primarily to cause the system to continue after

having delayed. Reasons for delays may be caused by l) the program

running, 2) an MSG control card with an H option, 3) the occurrence

of a new run when the system is in the stop between jobs mode, or 4)

a system key-in of W (see Paragraph 4.3.3.3).

LFKez-In

The LF key-ln provides for approximately four inches of paper from

the typewriter to be spaced to allow paper to be conveniently torn

off.

A Key-In

The A key-in is used for making magnetic tape assignments.

four options:

There are

A, AR--assign and rewind

AI--assign, and rewind with interlock

AN--assign without rewind

SYSTEM KEY-INS FOR INPUT/0UTPUT CONTROL

The system key-ins C (continue), R (recover), and F (fault) are used

to exercise control over input/output operations which did not function

normally. They are used to respond to type-outs produced by the sys-

tem. The proper response depends on the kind of input/output device

involved and the particular message produced.

*Time Key-In is not necessary on the 1108. May be booted without turning off

RTC or Day Clock.

29 April 1966 4-36

4.3.4.1

4.3.4.2

4.3.4.3

4.3.5

4.3.6

The Card Reader

The messages produced by the card reader are:

(i) CARD INTIK nn

This card reader has filled a stacker or the last card detected

is not a properly punched FIN card.

(2) VERIFY ERR OR nn

The card reader failed to read a card properly.

(3) CODEERRORnn

An invalid character code was read.

(4) CARD FAULT nn

The card reader is inoperative.

The Card Punch

The messages produced by the card punch are:

(i) nn

The card punch has exhausted its supply of blank cards, filled

a stacker, or filled its chip box.

(2) PUNCH FAULT nn

The card punch is inoperative.

Ma6netic Tape

Messages concerning magnetic tape are:

SYSTEM KEY-INS FOR SYMBIONT CONTROL

Symbionts must receive all of their control through the operator's

keyboard. Key-ins used for control of symbionts are thoroughly

described in the UNIVAC ll07 EXEC II Programmer's Guide and for

additions and modifications, Goddard's Computer Operator's Manual.

TYPEWRITER MESSAGES PRODUCED BY THE MONITOR

During execution of programs under the EXEC II System, there are vari-

ous messages produced on the typewriter. Consult the UNIVAC ll07 guide.

29 April 1966 4-37

4.4 BIBLIOGRAPHY

This section provides the user access to the list of documents de-

scribing the major components of the EXEC II System. For each docu-

ment, there is provided an abstract.

4.4.1 UNIVAC 1107 EXEC 2 User's Manual_ NASA EXEC 2 Processor Modified

Version of the UNIVAC System

X-543-64-212_ Goddard SpaceFlight Center

This document is intended as a working guide for the programmer using

the NASA EXEC II System on the Univac i107 computer. The EXEC II Sys-

tem has been modified and conventions for its use differ from one in-

stallatlon to another. This Manual is an attempt to assemble documen-

tation of this nature into a single source. Besides the addition of

two additional control cards, this Manual presents programming proce-

dures, aids for debugging, and describes the NASA Auxiliary Library

Tape as well as utility routines. This document is essentially obsolete.

4.4.2 UNIVAC ll07 EXEC II Programmer's Guide_ General Manual
U'-3671

This Manual describes the EXEC II System and its supporting routines.

It presents detailed specifications as to the form and content of con-

trol cards that exercise control over the EXEC II System; explains the

input/output facilities, the program complex file, the memory allocation

processor, the auxiliary processors; as well as commenting on operating

instructions and the role of the symbiont (a small multiprogrammed

routine).

4.4.3 UNIVAC 1107 Library II Progr .a.mmer's Guide_ General Reference Manual
0-3'672

This Manual presents to the programmer a description of the I/O pack-

ages for the communication with magnetic tape, drum, console, and paper

tape, as well as explaining the EXEC II diagnostic system. In addition,

the buffering routines for block and item level handling are described.

4.4.4 UNIVAC 1107 SLEUTH II Programmer' s Guide 2 General Manual
b-P-3670--Rev. 1

This Manual provides a basic introduction to the SLEUTH II assembler

language, describes its directives, and explains their use, and further

presents a brief programmer's guide to the SLEUTH II language.

29 April 1966 4-38

4.4.5

4.4.6

4.4.7

4.4.8

UNIVAC 1107 Central Computer 2 General Manual
0P-2h63--Rev. 2

This hardware-oriented Manual provides a description of the Univac

ll07 Computer and its principal components and an explanation of the

instruction word form and of the Univac ll07 instructions, with ex-

amples of their use. Input/output operations are presented only

briefly.

Decimal to Octal Conversion Table for Decimal Values 0 to 65t999

X-542-64-118_ Goddard Space Flight Center

This document consists of tables of octal and decimal numbers.

S-C 4020 Pro6rammer's Manual

This manual includes the modified Lockheed S-C 4020 Package which is

on the system library.

UNIVAC 1108 EXEC II 2 Programmer's Reference Manual
_-_058

This Manual is intended to be a guide for programmers using the EXEC

II System on the ll08. There is sufficient information on fundamen-

tal concepts of the internal structure and operational qualities of

the system. Background information is also provided to permit even

those who are unfamiliar with EXEC II to learn the system. There are

four major sections dealing with l) structure of the EXEC II System as

it exists in core and on drum; 2) controls--both the control of the

executive over the machine environment and the user control over the

executive; 3) the references required by the programmer to build and

test a worker program; and 5) Job set-up, which essentially presents

in capsule form the material covered in the previous sections.

29 April 1966 4-39

4.5

4.5 .i

AUXILIARY TAPE CONTENTS

The primary purpose for creating the NASA Auxiliary Library Tape is

to make available to the programmer library routines that cannot be

put on the program complex file because of the limited drum space

allocated for the system. There are two files generated.

AUXILIARY LISRARY DECK SET

Figure 4-6. shows the deck setup that must precede the program in

order to use routines in the Auxiliary Library. If all the routines

in the auxiliary library are not to be used, the IN k card should be

replaced with the following:

FIND _, YYYrrf/ZZZZZZ

TRD

for each routine desired. _ is the logical designation of the

UNISERVO upon which the auxiliary library tape is mounted; AUXLIB

is the label assigned to _; YYYYYY is the name of the routine de-
sired; and ZZZZZZ is the version name. The IN will read a file and

place the elements it contains in the program complex until an end-

of-file is reached. The FIND searches the tape until either the
element is located or an end-of-file is reached. TRD will read one

element from the specified unit and place the element in the program

complex.

NOTE: When using the Auxiliary Library Tape, be sure that the tape

has been positioned at the beginning of the file which contains the

desired routines. For efficiency, the routines should be called in

the order of their appearance on the tape.

[| IN_,

TRWA TO ASSURE TAPE POSITION AT FILE I \(

v ASG ;_ = AUXLIB

Figure _-6. Sample Auxiliary Library Tape Setup

29 April 1966 4-40

4.5.2

4.5.2 .I

FILE 2 (Independent Executable Programs)

File 2 of the auxiliary library tape consists of four programs.

CULL

CULL provides a reference-map of a SLEUTH II program. CULL associates

each occurrence of a name (alphabetic or numeric) in a program with the

line number and name of the program in which it occurs. Each name oc-

currence (which is a label with an asterisk) is tagged. The completed

map is in alphanumeric order. In the deck setup, X is the tape unit

assigned to the auxiliary library tape; yyyyyy is the label of the aux-

iliary library tape; xxxxxx is the label of the blank tape; PROGn/VERSn

are in the name/version of the routines to be culled; and PROGRAM is

the name of the program to be executed.

NOTE: G is used as the CULL input tape. First, the entire program deck

is loaded into PCF. Before execution of the program, those routines

which are to be CULLed are written out on Tape G. The program is then

executed. Following execution, CULL is read into PCF and executed.

CULL is part of the second file on the Auxiliary Library tape and is

entered into the user PCF by the complex utility routine.

'V FIN

v EOF

_" v A XQT CULL

f TRD X

r FIND X , CULL/NASA \

r ERS \
r PEF _.

X

=

\x

\\

TRW G

• r TRW _.

v XQT CUR

V R ASG G = XXXXXX

v R ASG X= AUXLIB

_V RUN

rv EOF

v XQT PROGRAM

TRI G

r TEF G

r TWR G, PROGn/VERSn B

r r._;R _., PROG,_'ERS'S

J PROGRAM DECK .

r ASM PROG,_/VERSA, PROG./V.ERS.B

r_v PROGRAM DECK IASM PROGI/VERSIA, PROGI/VERSIB

"_' R ASG G = xxx×x×

v RUN
\

Figure 4-7. Sample CULL

29 April 1966 4-41

4.5.2.2
FORTRAN II to FORTRAN IV--Translator (LIFT)

The translator is a program which automatically translates a FORTRAN

II source program to a FORTRAN IV source program. The Translator

operates under control of the ll07 EXEC II Monitor System. The Trans-

lator is also part of the second file on the Auxiliary Library Tape

and is entered into the user's PCFby the complex utility routine.
If in the deck setup, k is the logical designation of the UNISERV0

upon which the Auxiliary Library tape is mounted, AUXLIB is the label
of the Auxiliary Library Tape. The programmer should consult the

UNIVAC ll07 FORTRAN II to IV Translator (LIFT) Pro6rammer's Pro-
cedure Manual, UP-3863.

r v FIN

r v EOF

r FORTRAN II SOURCE DECK

v XQT LIFT

r TIRD k

r FIND)._ LIFT

r PEF X \

r _ TRW xXQT CUR

Fv ASG X = AUXLIB

rv RUN

\

\\

\

\
\

\

I
I

J

Figure 4-8. Sample FORTRAN II to FORTRAN IV--Translator (LIFT)

29 April 1966 4-42

4.5.2.3 1107 FAP Translator

The FAP Translator is a program which automatically translates a

FORTRAN Assembly Program (FAP) to a SLEUTH II source program. The

program operates under control of the ll07 EXEC II Monitor System.

The programmer should consult the ll07 FAP Translator Programmer's
Guide (UP-2593.17) for detailed information.

_v FIN

rv EOF

/._r__SOURCE DECK TO BE TRANSLATED
f V XQT FAPPE-

r TRD X

FIND X, FAPPE/NASA
PEF X

\

r TRW _,

r_; v XQT CURASG X = AUXLIB

v RUN

\
\

\

\

i

\

\

\

Figure 4- 9 . Sample ll07 FAP Translator

29 April 1966 4-43

4.5.2.4 Linear Programmin_

Linear programming is a mathematical technique for finding the best

or optimum solution to a particular problem. The optimum solution

may be in terms of the lowest cost, least effort, shortest time, or

minimum configuration of equipment to achieve a specific goal. With

linear programming, it is also possible to determine the courses of

action which will provide the greatest monetary return, the largest

number of units of a product, or the biggest level of efficiency.

In the deck setup, _ is the logical designation of the UNISERVO upon

which the Auxiliary Library Tape is mounted. AUXLIB is the label to

the Auxiliary Library Tape. The programmer should consult the ll07

Linear Programmer User's Manual Preliminar_ UP-3897 for detaile_---
information.

fv FIN

v EOF

r LINEAR COMMAND DECK

rv XQT 1107LP

f TRD X \

\
\

r FIND. X _ 1107LP

r PEF)l. "_

I_ TRW X

r- XQT CUR '_

f _ ASG X = AUXLIB

v RUN

L.

.J

Figure 4-10. _mple Linear Programming

29 April 1966 4-44

4.6 UTILITY ROUTINES

This section describes those utility routines that have been pre-

pared for use by Goddard Space Flight Center programmers.

1107 UTILITY PROGRAMS

Tape Copy

This utility routine will accept assignments for up to eight input

tapes and eight output tapes. In the copy process, density and parity

may be varied by console key-in parameters. Also, data representation

can be changed from Fieldata to BCD, or the converse, or may be left

in its original form.

By aopropriate manipulation of the tape copy parameters, the user may

perform such tasks as duplicating a tape, taking files from an input

tape and scattering them onto separate output tapes, and gathering

files from several input tapes onto a single output.

The tape copy routine may operate in any one of three environments:

l) a subprogram to a user's routine, 2) a standard operator's utility

program, and 3) a subroutine to the higher level Tape Utility Program.

Use of TCOPY$ is virtually the same from any environment.

To request TCOPY$, the programmer fills out the reque_ card (1107

Instruction Card) indicating to the operstor the tape(s) desired.

The request card must be filled out in the following manner:

On one side of the request card is a large, almost empty space, label-

ed "Special Instructions." In this space, write the characters:
PPDDFTNN

a. Under the first P, write the letter 0 or E, depending on whether

the input tape is of odd or even parity.

b. Under the second _wrlte 0 or E for the output tape.

c. Under the first D, write L or H, depending on whether the input
tape is of low or high density.

d. Under the second D, write L or H for the output tape.

eo Under the F, write one of the digits 1 through 99 to specify the

number of consecutive end-of-files at which the current copy

should terminate, or write a 0 to mean that TCOPY should ignore
this parameter.

29 April 1966 4-45

4.6.1.2

fo

go

Under the T, write one of the digits 0 (no conversion), 1 (BCD

to FD, card base), 2 (FD to BCD, card base), 3 (BCD to FD,

print base), or 4 (FD to BCD, print base).

Under the NN, write one of the numbers Ol through 99, to specify

the number of serial end-of-files at which the current copy

should terminate.

EXAMPLE : PPDDFTNN

EEHH3¢58

ANOTHER EXAMPLE : PPDDFTNN

Once control has been given to the TCOI_Z$ routine, requests for in-

put parameters are made. These concern parity and density settings#

format conversions, and copy termination characteristics. Any param-

eter specification normally comes from an input card; but, by sub-

stituting an EOF control card in its logical place, requests may be
made from the console.

Since the TCOI_f$ routine occupies much of core, it is often necessary

for the user to define an overlay structure with the MAP processor.

The TCOPY$ routine has been written so that the Autoload feature of

MAP is permissible. Linkage to the tape copy routine is

LMJ ii, TCOPY$

+ 'XY'

where X is logical unit designator of the file of input tapes, and

Y is the logical unit designator of the file of output tapes. For

details, see 1107 Programmer Notes 6 and 7, obtainable from Mrs.

Pat Barnes, Building 3, Room 125.

Tape Print

This utility routine will accept assignments for up to eight input

tapes. Console key-in parameters allow for setting parity, density,

print termination characteristics, and data formation in a manner

analogous to the tape copy utility routine. In addition, up to 99

files may be skipped before printing begins. Also, an identification

field is provided to allow a unique heading on the printer hard copy.

To request TPRNT$, the programmer fills out the job request card

(ll07 Instruction Card) indicating to the operator the tape(s) desired.

The request card must be filled out in the following mannner:

29 April 1966 4-46

Onone side of the request card is a large, almost empty space,
labeled "Special Instructions". In this space, write the char-
acters: PDFTNNSSIDENT

a. Under the PD, write the letter 0 or E, depending on whether
the input tape is of odd or even parity.

b. Under the F_ write one of the digits 1 through 9 to specify the

number of consecutive end-of-files at which the current copy

should terminate, or write a 0 to mean that TPRINT should ignore

this parameter.

C. Under T, write one of the letters F (Fieldata), B (BCD to FD),

0 (octal), D (decimal), E (exponential floating point), X

(floating point to fixed polnt), or U (user's general format,

if any).

do Under NN, write one of the numbers O1 through 99 to specify the

number of serial end-of-files at which the current copy should

terminate. 00 or _V means that this field is ignored.

e . Under SS, write one of the numbers 01 through O0 to specify the

number of end-of-file marks to be skipped at the beginning of

the current print.

f. Under IDENT, write any six characters or less, to request any

identifying key-in for the current print. This field is com-

pletely arbitrary and need not be provided.

Since the TPRNT$ routine occupies much of core, it is occasionally

necessary for the user to define an overlay structure with the MAP

processor. The tape print routine is written so that the Autoload

of MAP is permissible. The calling sequence is:

LMJ ii, TPRNT$

F FORM 18, 12, 6

F LABEL, BLKLIM, LU

where [ABEL is the entry point name of the user's own formatting sub-

program or the value _ if none is defined; BLKLIM is the integer

value of the number of blocks to print before terminating the current

print job. This count will be nullified for the current file if an

end-of-file mark is read before the designated number of blocks. The
value _ (zero) means an indefinite number of blocks is to be read.

LU is any logical unit designation for the input file (such as '_").

For more details on Tape Print, see II07 Programmer Notes 6, 7, and

8, obtainable from Mrs. Pat Barnes, Building 3, Room]25.

29 April 1966 4-47

4.6.2.2

1401 UTILITY PROGRAMS

Univac 1107 Fieldata Code Conversion in IBM/BCD No. 55

The Univac 1107 Fieldata code to IBM Binary Coded Decimal utility

program provides the ability to convert a Univac ll07 Fieldata tape

to IBM Binary Coded Decimal tape equivalent. Field Fieldata-to-BCD

Dump processing of any combination of Fieldata tape-to-printer and

Fieldata tape-to-BCD tape operations.

Programming information on the Fieldata-to-BCD Dump may be obtained

from Mrs. Pat Barnes, Building 3, Room 125, Extension X-6796. When

submitting runs, simply specify Fieldata Dump on your Job request
card. This program is available in the 1401 machine room in Build-

ing 14.

Any difficulties or discrepancies encountered in the use of this

utility program should be directed to the Programming Methods Sec-
tion, Advanced Projects Branch, Extension 6796.

1,401 Program .(No. 56) to Interpret and Print ii07_ .PR Tapes

The 1401 program to print and interpret 1107 .PR tapes is used in

conjunction with the llO7 control card VS TPR. This has been done

to increase utilization of the ll07, to speed up execution of the

programs processed by that large scale computer, to more efficiently

use the drums, and to exactly position the margins. Additionally,
output may be saved and/or reprinted.

29 April 1966 4-48

4.7 ASSEMBLY AND EXECUTION FROM TAPE

Programs and subroutines may be assembled and executed from tape

rather than from cards through the use of the Complex Utility Rou-

tine (CUR). (See page 5-15 of the EXEC II Manual, U-3671.)

The program must have been previously been loaded onto tape through

the ll07 or ll08 via CUR. This may be done by a simple OUT instruc-

tion, which will put the entire drum PCF onto the specified tape,

or specific routines may be loaded onto tape by use of the TWR in-

struction. The OUT instruction may be used to specify one or more

of the seven different types of elements. When the programmer has

the desired routines on tape, an end-of-file is put on the tape,

using the TEF instruction.

In execution from tape, it is sufficient to read in the entire file

of the input tape via the CUR instruction, IN. The entire file will

be read into the drum PCF. Any additional routines may then be read

in from cards or another tape. (If two routines are read into the

drum PCF having the same name and version, the last one read in will

delete the previous one. Therefore, if one wishes to substitute a

new routine for one currently on tape, it is only necessary to read

in the new routine after the old one has been loaded into the drum

PCF.) Once the entire PCF has been loaded, an XQT card will allo-

cate the routines needed and enter the desired execution. Several

different main programs may be held on the drum PCF at the same

time, so that several executions may follow one another without

erasure and rewriting of the drum PCF.

More often than not, it is desired to reassemble or recompile a pro-

gram that is already loaded onto a program tape. It is not necessary

to delete the program by a new card deck, as indicated above, if the

program is loaded onto the program tape in symbolic form. (Obviously,

one cannot reassemble or recompile a relocatable routine.) It is

only necessary to reassemble from drum with correction cards. To

specify assembly or compilation from drum, the three-letter mnemonic

for the processor should be followed with "*". For example, if we

wish to replace the fourth card of a FORTRAN IV program named TEST,

the following deck will suffice:

V IWL FOR,* TEST

-4,4

GO TO 128

In the above example, we will get a slngle-spaced listing of the rou-

tine named TEST, with assembly listing; the correction cards will be

listed prior to the listing, and the fourth card will be replaced by

the FORTRAN instruction GO TO 128. The relocatable element formed

by this assembly will have the version name CODE.

29 April 1966 4-49

The programmermay reassemble or recompile as manyroutines as neces-
sary. The W option is not necessary for assembly with corrections_
it merely lists the correction cards for each reference. The pro-
grammershould be careful that he has the proper listing for the sym-
bolics from which he is updating--with a large number of updates, it
is easy to forget which routine is on tape (the voice of experience).
He should give the relocatable the samenameand version as the pre-
vious relocatable element, unless the previous relocatable is deleted
by the DEL instruction or selection is madeby use of flags.

Further information on correction cards is found on page 5-10A of the
EXEC II Manual (U-3671), and information on flags is found on pages

5-5, 5-9, 5-10, 5-19, 5-27, 5-28, 5-30, and 5-31 of the same Manual.

29 April 1966 4-50

4._ CODING SHEETS

A special printed coding form (see Figure 4-11.) is provided for

writing programs in SLEUTH II language. Coding is in free form.

This coding form facilitates both the writing and the keypunching

of programs. These forms are obtainable from Mrs. Pat Barnes, Build-

ing 3, Room 125.

29 April 1966

m
[

X

m

0.u.

x

II

Iii
II
m

U

4-51

Figure 4-11. Assembly in SLEUTH II Programming Form

27 May 1966 5-i

Paragraph

5.1

5.2

CONTENTS

CHAPTER 5 AUTOCODER-SPS

Pag____e

SYSTEM DESCRIPTION 5-1

5.1.1 SYSTEM CONFIGURATION 5-1

5.1.2 MACHINE CONFIGURATION 5-5

5.1.3 SYSTEM TAPE MAINTENANCE 5-6
5.1.4 ERROR REPORTING 5-6

DETAILED PROCEDURES 5-7

5.2.1 AUTOCODER PROCESSOR-CONTROL OPERATIONS 5-7

5.2.2 SPS PROCESSOR-CONTROL OPERATIONS 5-10

BIBLIOGRAPHY 5-i1

1401 UTILITY ROUTINES 5-15

5.4.1 FORTRAN PREPROCESSOR 5-15

5.4.2 TWO-TAPE AUTOCODER ASSEMBLY SYSTEM 5-15
5.4.3 MAST (Minneapolis Assembly of SPS Twoi 5-15

5.4.4 GOODARD MULTIPURPOSE UTILITY PROGRAM 5-16
5.4.5 TAPE DUPE (SNOOPY) _-16

5.4.6 PRE-PROCESS LISTING ROUTINE 5-16

5.4.7 1401/1460 COMBINED UTILITY ROUTINE 5-17

5.4.8 1.4K 1401 PROGRAM 5-17

5.4,9 1401 CARD-TO-TAPE PROGRAM FOR 7090 IBSYS SYSTEMS . . 5-17

5.4.10 UNIVAC llO7 FIELDATA CODE CONVERSION IN IBM/BCD... 5-17

5.4.11 1401 IROGRAM TO INTERPRET AND PRINT ll07,

•PR TAPES 5-17

2T May 1966 5-ii

Paragraph

5.5

CONTENTS (Cont'd)

Pag__e

5.4.12 TABLE OF CONTENTS 5-17

5.4.13 TAPE MODIFICATIONS PROGRAM 5-18

5.4.14 MYSTIC LIST 5-18

5.4.15IBTDTAPEDUMPROUTI_........ 5-18
5.4.16 FORTRAN II LANGUAGE CONVERSION _OGRAM'(LCP)I• • • 5-18
5._.17 DOCUMENTATION AIDS SYSTEM 5-19

CODING SHEETS 5-20

5-1

5-2

5-3
5-4

ILLUSTRATIONS

Page

Autocoder Flow Diagram 5-3

SPS Flow Diagram 5-4

Autocoder Coding Sheet 5-21

SPS Coding Sheet 5-22

Table

5-1

5-2

5-3

TABLES

_ge

Computer Equipment 5-5

Autocoder Processor-Control Operations 5-7

SPS Processor-Control Operations 5-10

9

27 May 1966 5-1

CHAPTER 5

AUTOCODER-SPS

5.1

5.1.1

SYSTEM DESCRIPTION

This chapter describes two similar symbolic programming systems,
the Autocoder and the Symbolic Programming System (SPS) for IBM

peripheral equipment. (See Table 5-1.) The symbolic progranming

systems facilitate logical, efficient programming, with a minimum

of actual coding effort. The programmer may use symbolic addresses

in place of numerical addresses, use mnemonic operation codes

rather than machine language codes and by use of symbolic language
he can control the locations of record and work areas if he so

chooses, or he can leave this job to the processor program.

SYSTEM CONFIGURATI ON

The Autocoder language is not directly compatible with SPS, but
the Autocoder translator can translate source programs coded in

either language or in a combination of the two. The Autocoder is

a more powerful machine-oriented language than SPS and the major
differences between them is that the Autocoder:

lJ Provides macro instructions whereby one instruction in

the source program is translated into many actual machine

instructions. (SPS does not use macros.)

o Uses literals whereby the Autocoder processor assigns a

location to the constant and fills in the assigned address

in the instruction. (SPS does not use literals.)

27 May 1966 5-2

. Uses a free-form coding sheet whereby the programmer uses

as much space as required for each operaud and separates

the operands by commas if there is more than one. (SPS

coding is of the fixed-form type)

4. Provides library routines. (SPS would require tape units.)

The Autocoder requires at least four magnetic tape units and 4,000

positions of core storage. SPS is usable on cards only. SPS-1 can

assemble programs for any size object machine from 1,400 to 4,000

positions of core storage employing a 1,400-character machine. SPS-2

can assemble programs for any size object machine from 1,400 to 16,000

positions of core storage employing a 4,000-character machine. There

is a strict one-to-one correspondence of SPS statements. The SPS

translator requires 4 card passes (or 5 if a condensed object program

deck is desired). The 1401 Program Library contains several user-

developed revisions of the SFS translator utilizing tape passes, rather

than eard passes. Although these programs will effectively speed up

the time required for translation, they do require from one to three

magnetic tape units (depending on the program used) in addition to the

minimum configuation requirements.

There is a 1401 Input/Output Control System as a supplement to the

Autocoder which handles all of the normal input and output program-

ming considerations with a minimum of programmer effort. It consists

of additional control and macro operations that handle reading and

writing, tape blocking and unblocking, file labeling, and error

checking.

Figure 5-1 shows the Autocoder flow diagram. Figure 5-2 shows the

SPS flow diagram.

27 May 1966 5-3

" Il Ill

l O

l° i _I

bD

.r-I

g
,--.t
r_

%
I1)

"d

O

0

I

27 May 1966 5-4

1

N I ,d

w

}

0

_0

o_
,-4

4
!

u'k

©

ho
.H

27 May 1966 5-5

5 .i.2 MACHINE CONFIGURATION

The programmer using the Goddard Space Flight Center Computer Com-

p]exhas a vast quantity of data processing equipment at his dis-

posal. The Autocoder-SPS systems operate on several of these com-

puters. A list of this equipment is given in Table 5-1.

Table 5-1. Computer Equipment

Bldg.
Loc.

14

14

14

14

3

14

21

14

14

Computer Memory Magnetic Card Line

Facility Size Tape Units Read/Punch Printer

A-I_-1401

B-I_M-1401

C-I_M-1401

D-I_M-1401

E-IBM-1401

F-IBM-1401

IBM-1460

I-IBM-7010**

IBM-1401

1.4K

8K

8K

4K

4K

8K

8K

10OK

8K

1-733o

2-733o_-**

3-733 oK-**

2-7330

2-729-II

2-729-II

4-729-vi***

2-729 -IV_%_-_

8-729-IV*_**

1-729-VI

2-T29-IV

14o2-i

14o2-i

1012 -I*

14o2-i

1402 -I

1402-I

1402-I

1402-I

1402-I

1403-II

1403-II

14o3-II

14o3-Ii

1403-II

1403-II

1403-III

* Paper tape reader/punch

**1301 disk
*** Switchable units

**** Two of these are switchable on the 1401.

27 May 1966 5-6

5 .i .3

5 .i .4

SYSTEM TAPE MAINTENANCE

The Programming Methods Section (PMS) of the Data Systems Division

has prinmry responsibility for maintaining the Autocoder master tape.

Tape revisions or updating occur periodically as a result of one or

more of the following conditions: l) new Autocoder version or sig-

nificant corrections released by IBM; 2) major changes originating

from GSFU programmers; and 3) catastrophic errors requiring the im-

mediate issurance of new tape.

ERROR REPORTING

The PMS has the responsibility of maintaining the Autocoder and SPS

systems. Any questions regarding system utilization and system dis-

crepancies should be directed to FMS personnel. The current method

of reporting system discrepancies verbally is expeditious. However,

it is recommended that the System Discrepancy Report (see Form l-l,

Chapter l) be utilized for submittal to the PMS coordinator. In this

way, a current file of all discrepancies will be maintained along

with the corrective actions taken. A copy of the Discrepancy Form

will be available in the PMS coordinating office (Room 127, Building

3) and in the dispatcher's office (Building l, Building 14, and

Building 3). Programmers are required to periodically check the Sys-

tem Status Report (see Form 1-2, Chapter l) to insure satisfactory

operational performance from the system used.

27May 1966 5-7

5.2

5.2.1

DETAILED PROCEDURES

This section describes the Autocoder processor-control operations

and the SPS processor-control operations.

AUTOCODER PROCESSOR-CONTROL OPERATIONS

Autocoder has several control operations that enable the user to

exercise some control over the assembly process. They are developed

here for quick reference. For details, see the IBM 1401 and 1460

Autocoder (on Tape) language Document, Form C24-3319-0.

Table 5-2. Autocoder Processor-Control Operations

Op Code Purpose Description

JOB Job Card

CTL Control

Card

ORG Origin

This is the first card in the user's source

program deck. It is used to print a head-

ing line on each page of the output listing

from the assembly process and to identify

the self-loading program deck or tape. It

allows the programmer to identify a job or

parts of a job in the output listing.

The control statement is the second entry

in the source program deck. It is used to

specify size of the processing and object

machine, type of output, and the presence

or absence of the Modify-Address feature.
The MA instruction is standard in the 1460

systems and in 1401 systems with 8-, 12-,

and 16-thousand positions of core storage.

For an object machine not equipped with the

MA feature, the Autocoder processor auto-

matically assembles a routine to simulate

the MA instruction, types out the object

program, and indicates the presence of the

fifth tape and of the Read-Punch Release

Feature.

Used to specify a storage address at which

the processor should begin assigning loca-

tions to instructions, constants, and work

areas. Allows programmer to chose area(s)

of storage where object program will be

located.

27 M_y 1966 5-8

Table 5-2. Autocoder Processor-Control Operations (Cont'd)

Op Code Purpose Description

LTORG Literal Coded in same way as ORG statements, the

Origin LTORG statements direct the processor to

assign storage locations to previously

encountered literals and closed library

routines, beginning with the address

written in the operand field of the LTORG

statement. LTORG statements can appear

anywhere in the source program.

EX Execute

XFR Transfer

END End

Used during the loading of the assembled

machine language program to discontinue the

loading process temporarily to execute a

portion of the program just loaded. Allows

use of several program sections if total

program exceeds the limits of available

storage capacity. If inputs to the program

are on magnetic tape and the program is also

on tape, one tape unit can be assigned to

the program and another can be assigned to

the input data.

Same function as an EX statement except that

literals, closed library routines, and ad-

dress constants are not stored. An XFR

statement transfers to and executes instruc-

tions that have been previously loaded.

As the last card in the source deck, it is

used to signal the processor that all of the

source program entries have been read, and

to provide the processor with the informa-

tion necessary to create a bootstrap card.

This bootstrap card causes a transfer to the

first instruction in the object program
after it has been loaded into the machine at

program load time. Thus, program execution

begins automatically.

27 May 1966 5-9

Table 5-2. Autocoder Processor-Control Operations (Cont'd)

Op Code Purpose Description

SFX Suffix Directs the processor to put a suffix code

in the sixth position of all labels in the

symbolic program that have five, or fewer

chapters, until another SFX statement is

encountered. In this way, the programmer
can use the same label in different sections

of the complete program. A suffix state-

ment with a blank operand can be used to

stop the assignment of a suffix code.

ENT Enter New

Coding Mode

ALTER Alter

Although the 1401 and 1460 Autocoder pro-

cessor accepts source programs coded in

either free-formAutocoder language or in

fixed-form SPS language, it is possible to

assemble a single program coded in a com-

bination of the two languages. With ENT

the processor is informed that a change in

coding form follows. Allows programmer pro-

grams prepared wholly or partially in SPS

format to be reassembled by the processor.

Used to add, delete, or substitute instruc-

tions in the object program after the

original assembly has been cc_pleted. By

saving Tape 4, which, at the end of assembly,

contains a source program, it is possible to

reassemble the program easily by processing

ALTER cards. During each assembly, each

statement can be altered by anALTER entry

if assigned a sequence number. This number
is listed in the first column of the output

listing. These numbers are used in the ALTER
entries to reference statements to be changed

during the reassembly.

27 May 1966 5-10

5.2.2 SPS PROCESSOR-CONTROL OPERATIONS

SPS has several control operations that enable the user to exercise

some control over the assembly process. They are developed here

for quick reference. For details see the IBM 1401 SPS document

Form C24-1480-1.

Table 5-3. SPS Processor-Control Operations

Op Code Purpose Description

CTL Control This control card is placed at the beginning

of the source deck, so that the SPS processor

is able to distinguish the storage sizes of

the processing machine and the object machine.

ORG Origin

EX Exe cut e

END End

An ORG statement causes the processor's

storage assignment counter to assign ad-

dresses beginning at a particular location

specified by the programmer. If it is

entered as the first card of the source pro-

gram, an ORG card can cause the initial

assignment of addresses to be at a location

other than 333. An ORG statement may be in-

cluded at any desired point in the source

program. This will cause the counter to be
reset and cause all future entries to be

assigned addresses beginning at the particular

location designated by the progran_ner. Char-

acter adjustment and fixing are not valid in

an ORG statement.

Used during the loading of a machine-language

program to discontinue the loading process tem-

porarily to execute a portion of the program

just loaded. Allows programmer to also divide

his program into several program sections if

his total program exceeds the limit of avail-

able capacity.

Signals the processor that the last card in

the source program has been processed. If the

programmer specified in the (A) operand the

actual or symbolic address at which the object

program is to begin execution, and END state-

ment will produce an instruction that will

start program execution immediately after

loading. If the (A) operand is blank, the

1401 will halt when the last instruction has

been loaded.

27 Fay 1966
5-11

5.3

5.3.1

5.3.2

5.3.3

BIBLIOGRAPHY

This section provides a list with abstracts of documents on

Autocoder-SPS.

IBM I401 and 1460 Autocoder (on Tape) Language Specifications

and Operatin_ Procedures

Form C24-3_I_-0

This publication contains the language specifications and operating

procedures for the Autocoder (on Tape) programming system. The IBM

1401 Autocoder processor can assemble programs for all 1401 and 1460

systems. The language specifications cover two sections: l) speci-

fications of the symbolic language (mnemonics, labels, address types,

and control operations) and the rules for writing the source program;

and 2) descriptions of macro operations and macro instructions. The

operating instructions describe the procedures to be performed by the

operator when assembling an Autocoder program on an IBM 1401 or 1460

tape system. There is also a description of the phases of the

Autocoder processor as well as an explanation on system halts and

restarts.

IBM 1401 S_mbolic Progran_in_ Systems
Form C24-1480-0

The reader should have a basic knowledge of 1401 machine language

programming in order to understand this manual which provides pro-

gramners with the information necessary to code a 1401 program in

SPS language and assemble a machine-language object program. De-

scribed are symbolic programming principles and concepts as well as

detailed specifications of the 1401 Symbolic Programming Systems,

SPS-1 and SPS-2. Operating instructions for processing the SPS

source program are expounded upon. For the beginning SPS programmer,

a sample program is included. There are also shown input and out-

put forms, a block diagram of the program procedure, the symbolic

program, and SPS output listings of the symbolic and machine-language

programs.

IBM 1401 Data Processin5 System Reference Manual

Form A24-3067

This manual presents the physical features of the 1401 Data Process-

ing System, enumerates the processing concept, discusses magnetic

tape, presents a description of address modification, and expounds

upon the operating features and timing, as well as providing appen-

dices showing forms, flow charts, operation codes, and other charts.

27 May1966 5-12

5.3.4

5.3.5

5.3.6

5.3.7

5 -3.8

System Operation Reference Manual_ IBM 1401 and IBM 1460

Data Processing Systems

Form A24-3067-1

This manual is the first of five providing the complete instruction

set for the IBM 1401 and 1460. The operation code for each instruc-

tion is provided in actual and mnemonic form, along with examples of

each. The formula for calculating the execution time of each instruc-

tion is also included. A general knowledge of the IBM 1401 or 1460

Data Processsng Systems is assumed.

IBM 1447 Console

Form A24-3031-3

This reference publication describes the specific models of the IBM

1447 Console that can be attached to the 1401 and 1460 Data Processing

Systems. It presents detailed descriptions of indicator lights, keys,

dials and switches.

Miscellaneous Input/Output Instructions, IBM 1401 and IBM 1460

Data Processing Systems

Form A24-3068-0

This publication presents a description of the instructions used

by the 1401 or 1460 to operate miscellaneous input/output units.

Also included is timing information for each unit attached to a

1401 or 1460 Data Processing System.

Tape Input-Output Instructions

IBM 1401; 1440 t and 1460

Form A24-306_-I

This publication not only contains a description of the instructions

used by the data processing system to operate the tape units attached

to it but also includes timing information on the 729, 7330, and 7335

tape units.

Special Features Instructions_ IBM 1401 and IBM 1460

Data Processing Systems

Form A24-3071-2

This manual describes the special features available for the 1401

and/or 1460 Data Processing Systems. Each feature is described and

identified for the system to which it can be applied. Included are

instructions for the special features on the IBM 1402, 1403, and

1009 when these units are used with the 1401 or 1460 Data Processing
Units.

27 May 1966 5-13

5.3-9

5.3 .IO

5.3.11

5.3.12

I_ 1402 Card Read-Punch

Form A24-3072-1

This manual describes the 1402 Card Read-Punch as it pertains to

the 1401, 1410, and 1460 data processing systems. It covers the

major mechanical units, their functions and operating controls, and

special features that can be installed to expand the capabilities
of the basic machine.

IBM I403 Printer

Form A24-3073

This manual describes the 1403 Printer as it pertains to the 1401,

1410, and 1460 data processing systems.

Input/Output Control System (on Tape), Specifications and

Operatin 6 Procedures t IBM 1401 and 1460
Form C24-1462-2

This publication presents the programming required to use the IOCS
to control the input/output of data from card reader, card punch,

printer, and tape files. There is a detailed description of the

IOCS entries (DIOCS and DTF) and the macro instructions. Of espe-

cially useful to experienced programners are the sections dealing

with Summaries (briefly lists storage-area considerations, macro

instructions and processing-overlap considerations and Program
Operation (describes IOCS library routines, labels, halts, and

error indications. IOCS is a supplement to Autocoder.

Utilit_ Pro6rams for IBM 1401 Tape S[stem: Preliminary Specifications
Form J24-1411-1

This bulletin describes the card-to-tape, tape-to-card and tape-to

printer programs for the 1401. This publication is a major revision

and obsoletes the previous bulletins, J24-1411-O and J29-1411-O.

The listed programs can, within limitations, accommodate magnetic

tapes and card decks prepared on any I_M system.

27 May1966 5-14

5.3.13

5.3.14

5.3.15

IBM l410/TOlO.Operating System (1410-PR-155) System Monitor
Form C28-0319-3

This publication provides programmers and systems analysts on the
use of the System Monitor to control the 1410/7010 Operating System.

Autocoder is an element of this operating system.

IBM 1410-7010 Operating System (1410-PR-155) Autocoder
Form C28-0326-2

This publication deals with the Autocoder language concerning this

1410/7010 Operating System. It describes the basic concepts and

functions of Autocoder, as well as types of operand entries and

operation codes, and further presents the macro system.

IBM 1410/7010 0_erating System (1410-PR-155)_ Basic Input/Output

Control System
Form C28-0322-3

This publication presents to 1410 and 7010 programmers the informa-

tion needed tow rite efficient programs incorporating the Basic

Input/Output Control System. This system can schedule, implement,

and control the transfer of data to and from core storage. It can

also perform functions relating to the transfer of data, such as
error detection and correction.

27May 1966 5-15

5.4

5.4.1

5.4.2

5.4.3

1401 UTILITY ROUTINES

These routines are used to facilitate program development, system

development, and program and system documentation.

FORTRAN PREPROCESSOR

The FORTRAN Preprocessor is a 1401 program that is used to scan a

FORTRAN source program for errors. This helps the programmer to

eliminate those errors prior to the program being submitted to the

7094 for compilation.

The object deck (L201OO00-L2010340) is used on the 1401 to write the

FORTRAN PREPROCESSOR on the Library Tape 1. To write this tape,

READY Tape l, place the FORTRAN Preprocessor deck in the card reader

and press the LOAD button. When the reader stops for the last card,

press START. To preprocess, place the FORTRAN source deck(s) in

the card reader, mount a blank tape on Unit 2, and the FORTRAN

Preprocessor tape on Unit 1. Tape 1 must be positioned ready to

read Record 1 before pressing or simulating the LOADTAPE button.

The complete program writeup and listing is available in the Program-

ming Methods Section.

TWO-TAPE AUTOCODER ASSEMBLY SYSTEM

The Two-Tape Autocoder Assembly System is used for the purpose of

bringing to the user of a smaller 1401 system the benefits of the

Autocoder Programming Language. It is designed to meet as many of

the specifications of the regular Autocoder system as is possible

within the limitations imposed by the availability of only two tape

units.

The complete program writeup and listing is available in the Program-

ming Methods Section.

MAST (Minneapolis Assembly of SPS Two)

The MAST program is a modification of the 1401 SPS II Assembly

Program to use magnetic tape to store the partly assembled output of

PASS 1 rather than on punched cards.

The complete program writeup and listing is available in the Program-

ming Methods Section.

27 May 1966 5-16

5.4.4

5.4.5

5.4.6

GODDARD MULTIPURPOSE UTILITY PROGRAM

The Goddard Multipurpose Utility Program is designed to enable

Goddard Space Flight Center to perform present day 7090 peripheral

tape-to-printer, card-to-tape_ and tape-to-card processing in any

combination of operations on the 1401 computer. The functions to

be performed are specified only by the use of sense switches, located

on the 1401 console; no control cards are necessary.

The complete program writeup and listing is available in the Program-

ming Methods Section.

TAPE (SNOOPY)

This program is used to duplicate tapes written in BCD and/or

binary mode. It reads tape from Tape Unit 1 and copies onto the

tape on Tape Unit 2. The program will dupe any length record up

to a maximum of 6689 characters. A check is made for minimum record

length of three 7094 words. Ten tries are made at reading a record

before the program halts. If the record is ignored (dropped) a line

is printed giving the record number and file, and a count of these

records is printed at the end of the file. An input tape can be read

without writing an output. This is used to scan a tape since the

statistics are printed at the end of the file.

The complete program writeup and listing is available in the Program-

ming Methods Section.

PRE-PROCESS LISTING ROUTINE

This SPS Pre-Process Listing Routine makes it possible for the

programmer to detect many coding or keypunching errors in the program

deck before assembly. Besides restoring the printer carriage,

this routine prints the card image and messages in eleven fields on

the printed page. It also prints at the end of the source program,

the number of significant labels in the entire object program as well

as causes the highest storage address assigned by the processor (ex-

clusive of the actual address assigned by the programmer) to be printed.

The complete program writeup and listing is available in the Program-

ming Methods Section.

27 May 1966 5-17

5.4.7

5.4.8

5.4.9

5.4. i0

5-4-i1

5.4.12

1401/1460 COMBINED UTILITY ROUTINE

This utility routine is used for routine card-to-tape and tape-to-

print/punch operations. The combined functions permit tape loading

concurrent with printing and punching. Simultaneous operations

cause printing to slow down to card reader speed. The 1447 IBM con-

sole typerwriter on the 1460 will print the reason for each pro-

grammed halt.

The complete program writeup and listing is available in the Program-

ming Methods Section.

1.4K 1401 PROGRAM

This is a print program for the 1.4K 1401 available from the Program-

ming Methods Section.

1401 CARD TO TAPE PROGRAM FOR 7090 IBSYS SYSTEMS

This 1401 card-to-tape program for the 7090 IBSYS systems is available

from the Programming Methods Section.

UNIVAC 1107 FIELOATA CODE CONVERSION IN IBM/BCD

The UNIVAC 1107 Fieldata code to IBM Binary Coded Decimal utility

program provides the ability to convert a UNIVAC Fieldata tape to

IBM Binary Coded Decimal tape equivalent. Fieldata-to-BCDDump

utility program for the IBM 1401 Tape System performs concurrent pro-

cessing of any combination of Fieldata tape-to-printer and Fieldata

tape-to-BCD tape operations.

1401 PROGRAM TO INTERPRET AND PRINT ii07 .PR TAPES

The 1401 program to print and interpret 1/LOT .PR tapes is used in

conjunction with the ll07 control card _ TPR or G Keyin. This

has been done to increase utilization of the ll07, to speed up exe-

cution of the programs processed by that large scale computer, to

more efficiently use the drums, and to e_ctly position the margins.

Additionally, output may be saved and/or reprinted.

TABLE OF CONTENTS

Using a set of control cards and the Advanced Orbital Programming

Branch (AOPB) Functions Tapes as input to IBM 1401, this routine

27 May1966 5-18

5.4.13

5.4.14

5.4.15

5.4.16

produces a Table of Contents of the AOPB Function Tapes. This

Table of Contents includes each routine name, description, and

where it may be found (i.e., volume number and page number) in

the AOPB Function List. The Table of Contents is keyed to the

Mystic list.

TAPE MODIFICATIONS PROGRAM

This IBM 1401 program is used to modify BCD tapes (usually BCD

program tapes). The input consists of the tape to be modified

and a card deck containing control cards and any desired modifi-

cations. The output is the modified tape and a listing of the

modified tape, preceded by a table indicating each modification.

The listing of the modified tape may be either an unedited, single-

spaced listing, or an edited Mystic Listing.

MYSTIC LIST

This routine is used to produce edited listings of CAMEO routines

and programs. The listings are used to facilitate program

development and for program documentation. The IBM 1401 version

accepts as input either cards or tape and produces, at the end

the listing, an index of subroutines by page number and an index

of suboutines by K-card. The Univac 1004 version accepts only

card input and does not produce the suboutine indices.

IBTD TAPE DUMP ROUTINE

This routine is for the 4K 1401 (or larger) machines. It prints

records up to 2347 characters. If the tape record exceeds this

limit it will not be read-in nor will message be printed to so

indicate.

FORTRAN II LANGUAGE CONVERSION PROGRAM (FORTRAN LCP)

The FORTRAN LCP is used to reduce the time and effort required to

convert existing FORTRAN II programs into System/360 FORTRAN IV pro-

grams. Those statements that cannot be converted are appropriately

flagged. The FORTRAN LCP can be executed on an IBM 1401 Data Pro-

cessing System (8,000 positions of core storage). For details on

the FORTRAN LCP, consult the IBM_System/360 Transition Aids: FORTRAN

II Language Conversion Program for the IBM 1401, Form C28-6560-0.

27 May 1966 5-19

5.4.17 DOCUMENTATION AIDS SYSTEM

The Documentation Aids (AD) System is designed as an aid to docu-

menting an existing program written in an assembly language. The

DA System provides machine-generated documentation aids to those

users who are programming in current IBM-supported assembly languages.

The system processe_ on a 1401 or 1460, source programs written in

SPS, Autocoder, MAP, FAP_ or Symbolic Flowchart Language. For de-

tails on the DA System, consult the Documentation Aids System

(1401-SE-12X) Program Reference Manual, H20-0177-0.

27 May1966 5-20

5.5 CODING SHEETS

The Autocoder coding sheet (See Figure 5-3) is free-form_ thus

allowing the programmer greater coding flexibility. The SPS

coding sheet (See Figure 5-4) is fixed-formwhereby the operand

portion of each line is divided into specific fields.

27May 1966 5-21

c

._o

8

_0
_u'7

z_ _

]

0

Z

_ m

Figure 5-3. Autocoder Coding Sheet

27 May 1966 5-22

x

o_.

]:
6 o

z

o_z

a. cD
Z

z u

o

_p
o

z ,,_

_,.,,,

E

tm _
m,. m,.

Figure 5-4. SPS Coding Sheet

7 September 1965 6_i

CHAPTER 6

SHARE OPERATING SYSTEM

NOTE

This chapter to be provided at a later date.

7 September1965 7-1

CHAPTER 7

360 OPERATING SYSTEM

NOTE

This chapter to be provided at a later date.

